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الذكاء الإصطناعي في  تتركز هذه الدراسة على واحدة من الموضوعات المهمة التي تخص    

تستخدم خوارزميات التجميع على نطاق . عملية تجميع البيانات ووضعها في تجمعات متشابهة

  .البيانات وبناء نموذج ترتيب البيانات واسع ليس فقط لتنظيم وتصنيف البيانات ولكن لضغط

تجمعات البيانات المتشابهة بطريقة سريعة  يمكن تلخيص مشكلة البحث في محاولة التعرف على

  .وبدقة عالية خصوصاً مع مجموعة البيانات المتداخلة والكبيرة الحجم

العديد من التجارب على أنواع مختلفة من البيانات الإصطناعية  اءولتنفيذ هذه الدراسة تم إجر

   .تم تطويرها خلال البحثوالحقيقية لإثبات مدى فاعلية الخورازميات التي 

  :ما يليوتمثلت أهم نتائج البحث في

 .تطوير معادلة جديدة لقياس مدى التشابه بين البيانات لتسهيل عملية التجميع )1

 .Kd-Treeتماد على تركيب البيانات في لتجميع البيانات بالإعتطوير خوارزمية جديدة  )2

تطوير أحد الخوارزميات المنشأة حديثا في مجال تجميع البيانات وجعلها قادرة على  )3

 .التعامل مع عدد أكبر من حزمات البيانات
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Abstract 

In this thesis we describe an essential problem in data clustering and present some 

solutions for it. We investigate using distance measures other than Euclidean type for 

improving the performance of clustering. We also develop a new point symmetry-based 

distance measure and prove its efficiency. We develop a novel effective k-means 

algorithm which improves the performance of the k-mean algorithm. We develop 

a dynamic linkage clustering algorithm using kd-tree and we prove its high 

performance. The Automatic Clustering Differential Evolution (ACDE) is specific to 

clustering simple data sets and finding the optimal number of clusters automatically. We 

improve ACDE for classifying more complex data sets using kd-tree. The proposed 

algorithms do not have a worst-case bound on running time that exists in many similar 

algorithms in the literature. 

Experimental results shown in this thesis demonstrate the effectiveness of the 

proposed algorithms. We compare the proposed algorithms with other famous similar 

algorithms. We present the proposed algorithms and their performance results in detail 

along with promising avenues of future research. 

Keywords: Data Clustering, Point Symmetry-Based Distance Measure, Validity 

Indices, Optimization, DE, ACDE, KD-Tree, Novel Effective K-Means, Dynamic 

Linkage Clustering 
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Chapter 1 

Problem Statement and Background 

1.1 Introduction 

A metaheuristic (Meta: in an upper level, Heuristic: to find) [1 ] is formally 

defined as an iterative generation process which guides a subordinate heuristic by 

combining intelligently different concepts for exploring and exploiting the search space. 

Learning strategies are used to structure information in order to find efficiently near-

optimal solutions. Metaheuristic algorithms [ 2 ] are approximate and usually non-

deterministic techniques which constitute metaheuristic algorithms ranging from simple 

local search procedures to complex learning processes. 

Clustering [3] is a division of data into groups of similar objects. Each group, 

called cluster, consists of objects that are similar within the cluster and dissimilar to 

objects of other clusters.  

Representing data by fewer clusters necessarily loses certain fine details, but 

achieves simplification, and so may be considered as a form of data compression.         

It represents many data objects by few clusters models data by its clusters. Data 

modelling puts clustering in a historical perspective which is rooted in mathematics, 

statistics, and numerical analysis. Clustering is the subject of active research in several 

fields such as statistics, pattern recognition, artificial intelligence, and machine learning. 

From a practical perspective, clustering plays an outstanding role in data mining 

applications such as scientific data exploration, information retrieval and text mining, 

spatial database applications, Web analysis, marketing, medical diagnostics, 

computational biology, and many others. 
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The clustering problem has been addressed in many contexts and by researchers in 

many disciplines. This reflects its broad appeal and usefulness as one of the steps in 

exploratory data analysis. 

Although classification [4] is an effective means for distinguishing groups or 

classes of objects, it requires the often costly collection and labelling of a large set of 

training tuples or patterns, which the classifier uses to model each group. It is often 

more desirable to proceed in the reverse direction: First partition the set of data into 

groups based on data similarity (e.g., using clustering), and then assign labels to the 

relatively small number of groups.  

From a machine learning perspective clusters correspond to hidden patterns, the 

search for clusters is unsupervised learning [5], and the resulting system represents        

a data concept. Therefore, clustering is unsupervised learning of a hidden data concept.  

Data mining deals with large databases that impose on clustering analysis 

additional severe computational requirements. These challenges led to the emergence of 

powerful broadly applicable data mining clustering methods. 

1.1.1 Basic Definitions 

The following terms are used throughout the thesis: 

Definition 1.1: A Pattern (or feature vector) is a physical or abstract structure of 

objects, which are to be grouped properly by the clustering algorithm. 

Definition 1.2: A Feature (or attribute) is an individual component of a pattern. It 

represents one of the traits based on which the patterns are to be classified [6]. 

Definition 1.3: A Cluster is a well defined collection of similar patterns and patterns 

from two different clusters must be dissimilar. 
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Definition 1.4: A Hard (or crisp) clustering algorithm assigns each pattern to one and 

only one cluster. 

Definition 1.5: A Fuzzy clustering algorithm assigns each pattern to each cluster with   

a certain degree of membership. 

Definition 1.6: A Distance Measure is a metric based on which the dissimilarity of the 

patterns are evaluated. 

Now we may formalize the definition of the clustering problem in the following way. 

Let P = {P1, P2, ....., Pn} be a set of n patterns each having d features. These patterns can 

also be represented by a profile data matrix Zn×d having n d-dimensional row vectors. 

The i-th row vector i characterises the i-th object from the set P and each element z i, j 

in  i corresponds to the j-th real value feature (j =1, 2, .....,d) of the i-th pattern 

(i=1,2,...., n). Given such an Zn×d a partitional clustering algorithm tries to find out a 

partition C = {C1, C2,......, Ck} such that similarity of the patterns in the same cluster Ci 

is maximum and patterns from different clusters differ as far as possible. The partitions 

should maintain the following properties: 

1) Each cluster should have at least one pattern assigned. i.e. Ci ≠ Φ   i {1,2,..., k}  

2) Two different clusters should have no pattern in common. i.e. Ci ∩ Cj = Φ   i ≠ j 

and i, j  {1,2,..., k}. 

3) Each pattern should definitely be attached to a cluster i.e. C   

Since the given data set can be partitioned in a number of ways maintaining all of 

the above properties, a fitness function or in other words some measure of the adequacy 

of the partitioning must be defined. Then the problem turns out to be one of finding a 

partition C* of optimal or near optimal adequacy as compared to all other feasible 

solutions C = {C1, C2,........, CN(n,k)} where N n, k
!
∑ 1 k i  is the 
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number of feasible partitions. Where n and k in N(n,k) are described in the previous 

paragraph. This optimization problem can be represented as:  

optimize   , C                                                          1.1  

where C is a single partition from the set C and f is a fitness function that quantifies the 

goodness of a partition on the basis of the similarity or dissimilarity measures of the 

patterns.  

1.1.2 Clustering Validity Indices 
In most of the cases, a class of statistical-mathematical functions, based on the 

notion of similarity or dissimilarity between the data points, is employed for judging the 

soundness of the clustering solutions provided by an algorithm. The functions are 

collectively known as the cluster validity indices (CVIs). Generally, a cluster validity 

index serves two purposes. First, it can be used to determine the number of clusters, and 

second, it finds out the corresponding best partition. One traditional approach for 

determining the optimum number of classes is to run the algorithm repeatedly with 

different number of classes as input and then to select the partitioning of the data 

resulting in the best validity measure [7]. Ideally, a validity index should take care of the 

following aspects of the partitioning: 

1) Cohesion: Patterns in one cluster should be as similar to each other as possible. 

The fitness variance of the patterns in a cluster is an indication of the cluster’s 

cohesion or compactness. 

2) Separation: Clusters should be well separated. Distance among the cluster 

centers, (may be their Euclidean distance) gives an indication of cluster 

separation. 

For crisp clustering, some of the well-known indices available in the literature are 

the Dunn’s index (DI) [8], Calinski-Harabasz index [9], Davis-Bouldin (DB) index [10], 
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PBM index [11], and the CS measure. All these indices behave somewhat like an 

objective function, minimization/maximization of which is expected to lead to an 

optimal partitioning of the data set under test. Because of their optimizing character, the 

cluster validity indices are best used in association with any optimization algorithm for 

finding out the appropriate clusters in a data set. In the following Section, we discuss 

one of the most validity indices used in the literature, pertinent to clustering problems. 

Recently, Chou et al. [12] proposed the CS measure for evaluating the validity of 

a clustering scheme. Before applying the CS measure, centroid of a cluster is computed 

by averaging the data vectors belonging to that cluster using the formula,  

1
                                                                                 1.2  

 
A distance metric between any two data points Z  and Z  is denoted by , . Then 

the CS measure can be defined as, 

∑ 1
| | ∑ max ,

∑ min
,

,
                              1.3  

 
As can easily be perceived, this measure is a function of the ratio of the sum of 

within-cluster scatter to between-cluster separation and has the same basic rationale as 

the DI and the DB measures. According to Chou et al., CS measure is more efficient in 

tackling clusters of different densities and/or sizes than the other popular validity 

measures, the price being paid in terms of high computational load with increasing        

k and n. 

1.1.3 Clustering Algorithms 

There are thousands of clustering techniques one can encounter in the literature. 

Most of the existing data clustering algorithms can be classified as hierarchical or 
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partitional as shown in Figure 1.1. Within each class, there exists a wealth of sub-class 

which includes different algorithms for finding the clusters.  

 
Figure 1.1: A taxonomy of clustering approaches  

(adapted from Jain, Murty, and Flynn [24]) 

While hierarchical algorithms [13] build clusters gradually (as crystals are grown), 

partitioning algorithms [14 ] learn clusters directly. In doing so, they either try to 

discover clusters by iteratively relocating points between subsets, or try to identify 

clusters as areas highly populated with data. 

Density based algorithms [15] typically regard clusters as dense regions of objects 

in the data space that are separated by regions of low density. The main idea of density-

based approach is to find regions of high density and low density, with high-density 

regions being separated from low-density regions. These approaches can make it easy to 

discover arbitrary clusters. 

Recently, a number of clustering algorithms have been presented for spatial data, 

known as grid-based algorithms. They perform space segmentation and then aggregate 

appropriate segments [16]. 

Many other clustering techniques are developed, primarily in machine learning, 

that either have theoretical significance, are used traditionally outside the data mining 

community, or do not fit in previously outlined categories. 



www.manaraa.com

7 
 

So we can summarize the clustering algorithms as follows [17]: 

 Hierarchical Methods 

o Agglomerative Algorithms 

o Divisive Algorithms 

 Partitioning Methods 

o Relocation Algorithms 

o Probabilistic Clustering 

o K-medoids Methods 

o K-means Methods 

o Density-Based Algorithms 

 Density-Based Connectivity Clustering 

 Density Functions Clustering 

 Grid-Based Methods 

 Methods Based on Co-Occurrence of Categorical Data 

 Constraint-Based Clustering 

 Clustering Algorithms Used in Machine Learning 

o Gradient Descent and Artificial Neural Networks 

o Evolutionary Methods 

 Scalable Clustering Algorithms 

 Algorithms For High Dimensional Data 

o Subspace Clustering 

o Projection Techniques 

o Co-Clustering Techniques 
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Clustering is a challenging field of research in which its potential applications 

pose their own special requirements. The following are typical requirements of 

clustering in data mining: 

 Type of attributes algorithm can handle. 

 Scalability to large data sets. 

 Ability to work with high dimensional data [18,19]. 

 Ability to find clusters of irregular shape. 

 Handling outliers (noise). 

 Time complexity. 

 Data order dependency. 

 Labelling or assignment (hard or strict vs. soft or fuzzy [20,21,22]). 

 Reliance on a priori knowledge and user defined parameters. 

 Interpretability of results. 

However, clustering is a difficult problem combinatorially, and differences in 

assumptions and contexts in different communities have made the transfer of useful 

generic concepts and methodologies slow to occur. 

1.2 Problem Statement 

Many algorithms in literature like ACDE algorithm suffer from an important fault 

of using Euclidean distance for calculating symmetry measure between data clusters. 

Using Euclidean distance is improper for classifying overlapping and arbitrary shaped 

clusters. So many other distance measures are developed in literature for improving 

calculating of symmetry measure to classify complex data sets.  

Symmetry is considered a pre-attentive feature which enhances recognition and 

reconstruction of shapes and objects. Almost every interesting area around us consists 

of some generalized form of symmetry. As symmetry is so common in the natural 



www.manaraa.com

9 
 

world, it can be assumed that some kind of symmetry exists in the clusters also. Based 

on this, some distance measures have proposed as a symmetry-based clustering 

technique. Points are assigned to a particular cluster if they present a symmetrical 

structure with respect to the cluster center. These measures are better than using 

Euclidean distance for classifying symmetrical shaped clusters but improper for 

classifying arbitrary shaped clusters. 

Some algorithms calculate connectivity of each data point to its cluster by 

depending on density reachability. A cluster, which is a subset of the points of the data 

set, satisfies two properties:  

1) All points within the cluster are mutually density-connected. 

2) If a point is density-connected to any point of the cluster, it is part of the 

cluster as well. 

These algorithms can find arbitrarily shaped clusters, but they require parameters that 

are mostly sensitive to clustering performance. From other side, these algorithms need 

to detect nearest neighborhood of each data point which cause time consuming.  

We tackled with this defect, and conclude that we can improve performance of 

classification by using other distance measures instead of Euclidean type and testing 

connectivity of each data point with its cluster by suitable method without increasing 

time complexity and without using additional parameters. By using suitable distance 

measure and checking density reachability of data points with its cluster, we can 

classify complex data sets which have overlapped and arbitrary shaped clusters.  

1.3 Thesis Contribution 

The contribution of the thesis is that we developed a new point symmetry-based 

distance measure by using kd-tree for classifying complex data sets, we improved the 

performance of K-mean and ACDE algorithms, and we developed an original algorithm 
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by using kd-tree. Experimental results are shown in this thesis to demonstrate the 

effectiveness of the proposed algorithms. We compared the proposed algorithms with 

other famous algorithms. We present the proposed algorithms and their results in detail 

along with promising avenues of future research. 

The rest of the thesis is organized as follows: Chapter 2 describes review of 

literature and related studies. The chapter describes differential evolution algorithm 

which is used by the Automatic Clustering Differential Evolution (ACDE) algorithm for 

finding the optimum number of clusters. The chapter presents ACDE algorithm and 

describes a simple modification of classical differential evolution algorithm which is 

implemented in literature for improving the performance of ACDE algorithm. The 

chapter offers a new point symmetry-based distance measure which is described in 

literature for improving point symmetric distance measure and using it to cluster 

overlapping and arbitrary shaped clusters with variable length. The chapter presents 

kd-tree which is the most important multidimensional structure for storing a finite set of 

data points from k-dimensional space.  

Chapter 3 illustrates our contribution by using kd-tree for developing an improved 

PS-Based distance measure. The chapter describes our contribution for improving 

efficiency of k-means algorithm. We called the proposed algorithm as a novel effective 

k-means algorithm. We used an improved PS-Based distance measure for developing 

the proposed algorithm. The chapter illustrates our proposed original algorithm for 

classifying complex data sets. We called the proposed algorithm a Dynamic Linkage 

Clustering using KD-Tree (DLCKDT). We used selected nodes from kd-tree to develop 

this algorithm. The Chapter illustrates our contribution for improving efficiency of 

ACDE to classify complex data sets automatically.  



www.manaraa.com

11 
 

Chapter 4 illustrates our tools for testing ACDE algorithm and shows 

experimental results. The chapter illustrates an important fault of using ACDE 

algorithm and describes an insufficiency of using Euclidean distance for calculating 

symmetry measure to classify overlapping and arbitrary shaped clusters. The chapter 

shows many experiments for testing PS-Based distance measure with k-means 

algorithm and demonstrate that it is insufficient for classifying complex data sets. 

Experimental results are shown in this chapter to demonstrate the effectiveness of the 

proposed algorithms. We used synthetic and real data sets for testing efficiency of the 

proposed algorithm. Finally, Chapter 5 concludes the thesis and presents suggestions for 

future work.  
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Chapter 2 

Review of Literature and Related Studies  

2.1 K-Means Algorithm 

K-means uses a two-phase iterative algorithm to minimize the sum of point-to 

centroid distances, summed over all k clusters: The first phase is "batch" updates, where 

each iteration consists of reassigning points to their nearest cluster centroid, all at once, 

followed by recalculation of cluster centroids. The second phase uses "online" updates, 

where points are individually reassigned. By doing so will reduce the sum of distances, 

and cluster centroids are recomputed after each reassignment. Each iteration during this 

second phase consists of one pass though all the points. K-means can converge to 

a local optimum which is a partition of points in which moving any single point to 

a different cluster increases the total sum of distances [23]. 

The K-means Algorithm is presented as follows: 

(1) Initialize K center locations (C1, ..., CK). 

(2) Assign each data point Xi to its nearest cluster center Cj.  

(3) Update each cluster center Cj to be the mean of all Xi that have been assigned as 

closest to it. 

(4) Calculate            

   ∑ min … ,  

(5) If the value of D has converged, then return (C1, ..., CK); else go to Step 2. 

Thus k-means has a hard membership function. Furthermore, k-means has            

a constant weight function, i.e. all patterns belonging to a cluster have equal influence in 

computing the centroid of the cluster. The k-means has two main advantages [24]: 

1) It is very easy to implement. 
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2) The time complexity is only O(n) (n being the number of data points), which 

makes it suitable for large data sets. 

However the k-means suffers from the following disadvantages: 

1) The user has to specify the number of classes in advance. 

2) The performance of the algorithm is data-dependent. 

3) The algorithm uses a greedy approach and is heavily dependent on the initial 

conditions. This often leads k-means to converge to sub-optimal solutions. 

Stephen J. Redmond and Conor Heneghan [25] presented a method for initialising the 

K-means clustering algorithm using kd-tree. The proposed method depends on the use 

of a kd-tree to perform a density estimation of the data at various locations. They used a 

modification of Katsavounidis' algorithm, which incorporates this density information, 

to choose K seeds for the K-means algorithm. 

K. Mumtaz1 and K. Duraiswamy [26], proposed a novel density based k-means 

clustering algorithm to overcome the drawbacks of DBSCAN and k-means clustering 

algorithms. The result is an improved version of k-means clustering algorithm. This 

algorithm performs better than DBSCAN while handling clusters of circularly 

distributed data points and slightly overlapped clusters. But there is a limitation for this 

algorithm. It requires a prior specification of some parameters, and the clustering 

performance is affected by these parameters.  

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a data 

clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and 

Xiaowei Xu in 1996 [27]. It is a density-based clustering algorithm because it finds a 

number of clusters starting from the estimated density distribution of corresponding 

nodes. DBSCAN is one of the most common clustering algorithms and also most cited 

in scientific literature.  
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2.2 Differential Evolution Algorithm 

This section presents differential evolution algorithm which is used by ACDE 

algorithm for finding the optimum number of clusters. 

2.2.1 Introduction 

The Differential Evolution (DE), proposed by Storn and Price in [28], [29] may be 

also seen as a simple real-coded Genetic Algorithm (GA). The first written article on 

DE appeared as a technical report in 1995. Since then, DE has proven itself in 

competitions like the IEEE’s International Contest on Evolutionary Optimization 

(ICEO) in 1996 and 1997. 

In DE community, the individual trial solutions (which constitute a population) 

are referred as parameter vectors or genomes. DE operates through the same 

computational steps as employed by a standard Evolution Algorithm (EA). However, 

unlike traditional EAs, DE employs difference of the parameter vectors to explore the 

objective function landscape. In this respect, it owes a lot to its two ancestors namely – 

the Nelder-Mead algorithm [ 30 , 31 ], and the Controlled Random Search (CRS) 

algorithm [32], which also relied heavily on the difference vectors to perturb the current 

trial solutions. Like other population-based search techniques, DE generates new points 

(trial solutions) that are perturbations of existing points, but these deviations are neither 

reflections like those in the CRS and Nelder-Mead methods, nor samples from 

a predefined probability density function, like those in Evolutionary Strategies (ES) 

[33,34]. Instead, DE perturbs current generation vectors with the scaled difference of 

two randomly selected population vectors. To produce a trial vector in its simplest form 

DE adds the scaled, random vector difference to a third randomly selected population 

vector. In the selection stage, the trial vector competes against the population vector of 

the same index. Once the last trial vector has been tested the survivors of all the pair 
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wise competitions become permanent for the next generation in the evolutionary cycle. 

In the following sections, we discuss each of these steps in sufficient details. 

2.2.2 Differential Evolution: A First Glance 

DE is a simple evolutionary algorithm. It works through a simple cycle of stages, 

presented in Figure 2.1. Below we explain each stage separately. 

 
Figure 2.1: The main stages of differential evolution algorithm 

(adapted from Das, Abraham and Konar [37]) 
2.2.2.1 Initialization of the Parameter Vectors 

DE searches for a global optimum point in a D-dimensional continuous 

hyperspace. It begins with a randomly initiated population of N D dimensional real-

valued parameter vectors. Each vector, also known as genome/chromosome, forms 

a candidate solution to the multi dimensional optimization problem. 

We represent subsequent generations in DE by discrete time steps like t = 0, 1, 2 

...t, t+1 etc. In most of the DE literatures, the successive generations are represented by 

G, G+1, G+2…or g, g+1 etc. [35] but we adopt a slightly different notation in order to 

remain consistent with the notations used in other chapters of the thesis and also to 

facilitate the mathematical analysis of DE undertaken here. Since the parameter vectors 

are likely to be changed over different generations, we adopt the following notation for 

representing the i-th vector of the population at the current generation (i.e. at time t) as: 

, , , , … . . , ,                                    2.1  

where i = 1, 2,…, N, and N is the number of initiated vectors. 
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For each parameter of the problem, there may be a certain range within which the 

value of the parameter should lie for better search results. At the very beginning of a DE 

run or at t = 0, problem parameters or independent variables are initialized somewhere 

in their feasible numerical range. So, if the j-th parameter of the given problem has its 

lower and upper bounds as ,  and  ,  respectively and , 0,1  denotes the 

j-th instantiation of a uniformly distributed random number lying between 0 and 1 for 

the i-th vector, then we may initialize the j-th component of the i-th population members 

as, 

, 0 , , 0,1 , ,                              2.2  

The process is illustrated in Figure 2.2 for 10 parameter vectors in two 

dimensional search space. Closed curves in Figure 2.2 denote constant cost contours, 

where a given cost function f (  ,   ) is constant.  

 

Figure 2.2: Initializing a DE population of N = 10,  
on a two-dimensional parametric space 

(adapted from Das, Abraham and Konar [37]) 
 

In Figure 2.3, we show the constant cost contours for the two dimensional sphere 

functions on the  parameter plane. 
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Figure 2.3: Constant cost contours for a sphere function 

(adapted from Das, Abraham and Konar [37]) 

2.2.2.2 Mutation with Differential Operators 

Biologically ‘mutation’ means a sudden change in the gene characteristics of a 

chromosome. In the context of the evolutionary computing paradigm, however, 

mutation is also seen as a change or perturbation with a random element. Most of the 

real-coded EAs typically simulate the mutation effects with additive increments, which 

are randomly generated by a predetermined Probability Density Function (PDF) [36]. 

DE, however, applies a uniform PDF not to generate increments, but to randomly 

sample vector differences like  ∆X , X X  . In DE, mutation amounts to 

creating a donor vector V t  for changing each population member X t , in each 

generation (or in one iteration of the algorithm). To create V t  for each i-th member of 

the current population (also called the target vector), three other distinct parameter 

vectors, say the vectors X , X , and  X  are picked up randomly from the current 

population. The indices r , r  and r are mutually exclusive integers randomly chosen 

from the range [1, N], which are also different from the base vector index i. These 

indices are randomly generated once for each mutant vector. Now the difference of any 

two of these three vectors is scaled by a scalar number F and the scaled difference is 
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added to the third one whence we obtain the donor vector V t . We can express the 

process as, 

V t X . X X                                    2.3  

Actually it is the mutation scheme that demarcates among the different kinds of 

DE schemes. Here presently we discuss one of the most popular schemes for the 

formation of the donor vector. The process is illustrated in Figure 2.4. 

 

 
Figure 2.4: Illustrating a simple DE mutation scheme 

in two-dimensional parametric space 
(adapted from Das, Abraham and Konar [37]) 

2.2.2.3 Crossover 

To increase the potential diversity of the population, a crossover operation comes 

into play after generating the donor vector through mutation. The DE family of 

algorithms can use two kinds of crossover schemes - exponential and binomial. The 

donor vector exchanges its body parts i.e. components with the target vector X t  under 

this operation to form the trial vector U t U , t , U , t , … . . , U , t .                  
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In exponential crossover, we first choose an integer n randomly among the 

numbers [0, D-1]. This integer acts as a starting point in the target vector, from where 

the crossover or exchange of components with the donor vector starts. We also choose 

another integer L from the interval [1, D]. L denotes the number of components; the 

donor vector actually contributes to the target. After a choice of n and L the trial vector: 

u , t  
, ,     h   ,

, ,   , ,…,                              2.4  

where the angular brackets denote a modulo function with modulus D. The integer 

L is drawn from [1,2,…, D] according to the following lines of pseudo code. 

L = 0; 

do 

{ 

               L=L+1; 

} while (rand (0, 1) < CR) AND (L<D)); 

Hence in effect Probability (L ≥ v) = (CR)v-1 for any v > 0. ‘CR’ is called 

crossover rate and it appears as a control parameter of DE just like F. For each donor 

vector, a new set of n and L must be chosen randomly as shown above. 

On the other hand, binomial crossover is performed on each of the D variables 

whenever a randomly picked number between 0 and 1 is less than or equal to the CR 

value. In this case the number of parameters inherited from the donor has a (nearly) 

binomial distribution. The scheme may be outlined as: 

u , ,  
, ,                                               
, , ,       , ,                                  2.5  

Where rand , 0,1 0,1  is a uniformly distributed random number, which is called 

anew for each j-th component of the i-th parameter vector.  [1,2,....,D] is 

a randomly chosen index, which ensures that ,   gets at least one component from 
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,  . It is instantiated once for each vector in one generation. We note that for this 

additional demand, CR is only approximating the true probability  that a component 

of the trial vector will be inherited from the donor. Also, one may observe that in a two-

dimensional search space, three possible trial vectors may result from uniformly 

crossing a mutant/donor vector  with the target vector . These trial vectors are 

1)  such that both the components of  are inherited from . 

2) , in which the first component (j = 1) comes from  and the second one 

(j = 2) from . 

3) , in which the first component (j = 1) comes from  and the second 

one (j=2) from . 

The possible trial vectors due to uniform crossover are illustrated in Figure 2.5. 

 
Figure 2.5: Different possible trial vectors formed due to uniform/binomial 

crossover between the target and the mutant vectors  
in two-dimensional search space 

(adapted from Das, Abraham and Konar [37]) 
2.2.2.4 Selection 

The last stage of a DE-iteration is the ‘selection’ i.e. deciding who between the 

target vector  and the newly formed trial vector  will survive to the next 
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generation. The decision whether original  will be retained in the population or 

will be replaced by  in the next time step t+1 is entirely dependent upon the 

‘survival of the fittest’ concept. If the trial vector yields a better fitness value it will 

replace the target vector in the next time step. Here by better fitness value we mean 

a lower value of the objective function in case of a minimization problem, and a higher 

value of the same if it is a maximization problem. The selection operation may be 

outlined as: 

X t 1                                                    
                                                             2.6  

where X  is the function to be minimized. Since the selection process employs           

a binary decision, i.e. any one between the target vector and its offspring survives the 

population size remains fixed throughout generations. The fitness of the population 

members either improves over generations or remains unchanged, but never 

deteriorates. 

2.2.2.5 Summary of DE Iteration 

An iteration of the classical DE algorithm consists of the four basic steps: 

initialization of a population of search variable vectors, mutation, crossover or 

recombination and finally selection. After having illustrated these stages, we now 

formally present the whole of the algorithm in a pseudo-code below. The algorithm is 

presented in the literature. 

Pseudo-code for the DE algorithm: 

Step 1. Set the generation number t = 0 and randomly initialize a population of NP 

individuals   , … ,   with t , , , , … . . , , and 

each individual uniformly distributed in the range [ , ], where                 
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, , , , … , ,   and , , , , … , ,  where          

i = [1,2,...., NP]. 

Step 2.  WHILE stopping criterion is not satisfied  

    DO 

         FOR i = 1 to NP                                //do for each individual sequentially 

Step 2.1 Mutation Step 

  Generate a donor vector , , , , … . . , ,  corresponding to    

  the i-th target vector  via one of the mutation schemes of DE (Equation  

  2.3). 

            Step 2.2 Crossover Step 

  Generate a trial vector , , , , … . . , ,  for the i-th target  

  vector t  through exponential crossover (Equation 2.4) or binomial  

  crossover (Equation 2.5) 

Step 2.3 Selection Step 

    Evaluate the trial vector  

IF ,               THEN  1 ,  

                                    1  

                                    IF , THEN  ,  

           

   END IF 

                        ELSE  1 , 1  

                        END IF 

         END FOR 

        Increase the iteration count t = t +1 
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    END WHILE 

The parameters used in the algorithm namely scale factor ‘F’ and crossover rate 

‘CR’ should be submitted before in order to invoke the main computational part of the 

algorithm – the while loop. The terminating condition can be defined in two ways: 

1) by a fixed number of iterations tmax, with a suitably large value of tmax depending 

upon the complexity of the objective function and alternatively, 

2) when best fitness of the population does not change appreciably over successive 

iterations. 

2.3 Automatic Clustering Differential Evolution  

This section presents Automatic Clustering Differential Evolution (ACDE) 

algorithm and describes a simple modification of the classical differential evolution 

algorithm which is implemented in literature for improving the performance of ACDE 

algorithm. This chapter illustrates our implementation of ACDE algorithm and shows 

experimental results. 

2.3.1 Introduction 

Most of the material in this chapter is borrowed from [ 37 ]. It describes                  

a Differential Evolution (DE) based algorithm for the automatic clustering of large 

unlabeled data sets. In contrast to most of the existing clustering techniques, the used 

algorithm requires no prior knowledge of the data to be classified. Rather, it determines 

the optimal number of clusters in the data ‘on the run’.  

Tremendous research effort has gone in the past few years to evolve the clusters in 

complex data sets through evolutionary computing techniques. However, little work has 

been taken up to determine the optimal number of clusters at the same time. Most of the 

existing clustering techniques, based on evolutionary algorithms, accept the number of 

clusters k as an input instead of determining the same on the run. Nevertheless, in many 
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practical situations, the appropriate number of groups in a previously unhandled data set 

may be unknown or impossible to determine even approximately. For example, while 

clustering a set of documents arising from the query to a search engine, the number of 

classes k changes for each set of documents that result from an interaction with the 

search engine. Also if the data set is described by high-dimensional feature vectors 

(which is very often the case), it may be practically impossible to visualize the data for 

tracking its number of clusters. 

The objective of the research work described in this chapter is two-fold. Firstly, it 

aims at the automatic determination of the optimal number of clusters in any unlabeled 

data set. Secondly, it attempts to show that Differential Evolution (DE), with 

a modification of the chromosome representation scheme, can give very promising 

results if applied to the automatic clustering problem. DE is easy to implement and 

requires a negligible amount of parameter tuning to achieve considerably good search 

results. Authors of [38] changed the algorithm from its classical form to improve its 

convergence properties. In addition to that, they used a novel representation scheme for 

the search variables in order to determine the optimal number of clusters. They refer to 

the new algorithm as the ACDE (Automatic Clustering Differential Evolution) 

algorithm. 

At this point, we would like to mention that the traditional approach of 

determining the optimal number of clusters in a data set is using some specially devised 

statistical-mathematical function (also known as a clustering validity index) to judge the 

quality of partitioning for a range of cluster numbers. A good clustering validity index is 

generally expected to provide global minima/maxima at the exact number of classes in 

the data set. Nonetheless, determination of the optimum cluster number using global 

validity measures is very expensive, since clustering has to be carried out for a variety 
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of possible cluster numbers. In the proposed evolutionary learning framework, a number 

of trial solutions come up with different cluster numbers as well as cluster center 

coordinates for the same data set. Correctness of each possible grouping is evaluated 

quantitatively with a global validity index (e.g. the CS or DB measure). Then, through a 

mechanism of mutation and natural selection, eventually the best solutions start 

dominating the population while the bad ones are eliminated. Ultimately, the evolution 

of solutions comes to a halt (i.e. converges), when the fittest solution represents a near-

optimal partitioning of the data set with respect to the employed validity index. In this 

way, the optimal number of classes along with the accurate cluster center coordinates 

can be found out in an evolutionary search process. A downside to the proposed method 

is that, its performance depends heavily upon the choice of a suitable clustering validity 

index. An inefficient validity index may result into many false clusters (due to the over 

fitting of data) even when the actual number of clusters in the given data set may be 

very much tractable. However, with a judicious choice of the validity index, this 

algorithm can automate the entire process of clustering and yield near optimal 

partitioning of any previously unhandled data set in a reasonable amount of time. This is 

certainly a very desirable feature of a real-life pattern recognition task. 

2.3.2 The DE-Based Automatic Clustering Algorithm 
 
2.3.2.1 Vector Representation 

In the proposed method, for n data points, each data point is d-dimensional, and 

for a user-specified maximum number of clusters Kmax , a chromosome is a vector of 

real numbers of dimension Kmax + Kmax × d. The first Kmax entries are positive floating-

point numbers in [0, 1], each of which controls whether the corresponding cluster is to 

be activated (i.e. to be really used for classifying the data) or not. The remaining entries 



www.manaraa.com

26 
 

are reserved for Kmax cluster centers, each is d-dimensional. For example, the i-th vector 

is represented as:  

 
 

The j-th cluster center in the i-th chromosome is active or selected for partitioning 

the associated data set if, Ti, j > 0.5. On the other hand, if, Ti, j < 0.5, the particular j-th 

cluster is inactive in the i-th vector in DE population. Thus the Ti, j s behave like control 

genes (They are called activation thresholds) in the vector governing the selection of the 

active cluster centers. 

The rule for selecting the actual number of clusters specified by one vector is: 

IF Ti, j > 0.5 THEN the j-th cluster center ,  is ACTIVE 

ELSE ,  is INACTIVE 

Figure 2.6 shows an example of selecting three active centroids of five centroids. Each 

centroid has three values corresponding to the three dimensions of the space.  

 
Figure 2.6: The chromosome encoding scheme in ACDE.  

A total of five cluster centers have been encoded for a 3-dimensional data set. 
 Only the activated cluster centers have been shown as orange circles. 

(adapted from Das, Abraham and Konar [37]) 
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2.3.2.2 Designing the Fitness Function 

One advantage of the ACDE algorithm is that it can use any suitable validity 

index as its fitness function. After experimenting with a number of validity indices 

(a brief review of which can be found in section 1.1.2 of chapter 1), we selected the CS 

measure as the basis of our fitness function, as CS measure deals with clusters of 

different densities and/or size more efficiently than several other existing validity 

indices. Before presenting some results from these experiments that establish the 

superiority of CS measure, we first redefine the CS measure below. 

Let the centroid of a cluster be computed by averaging the data vectors belonging 

to that cluster using the formula, 

m
1
N Z                                                            2.7  

A distance metric between any two data points X  and X  is denoted by d X , X . 

Then the CS measure can be defined as, 

∑ 1
| | ∑ max ,

∑ min
,

,
                              2.8  

Note that the above measure is a function of the ratio of the sums of within cluster 

scatter to between-cluster separation and has the same basic rationale as the DB and the 

DI measures. That is, they are to seek clusters that have minimum within-cluster scatter 

(i.e. compact) and maximum between-cluster separation (i.e. well-separated). The 

numerator of (3.2) basically uses the largest distance between two data points lying in 

the same cluster to measure the scatter volume. On the other hand the denominator 

computes the average distance between cluster centers. 

Authors of [37] presented examples on three hand-crafted data sets to illustrate the 

effectiveness of the CS measure in handling clusters of different geometric shapes, 
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densities and sizes over some well-known state-of-the-art validity indices found in 

literature. For comparison they used the following validity indices: the Dunn’s Measure 

(DI), the Davies-Bouldin’s measure (DB) with the parameters q = t = 2, the Bezdek’s 

partition coefficient (PC) [39], Bezdek’s classification entropy (CE) [40], and the Xie-

Beni’s index (XB) [41]. Please note that for the DI or PC validity measure, the largest 

value indicates a valid optimal partition. On the contrary, for the DB, CE, XB, or CS 

validity measures, the smallest value indicates a valid optimal partition. 

The data sets were clustered with either k-means or Gustafson-Kessel (GK) [42] 

algorithm at each cluster number k for k = 2 to k =10. Since both the algorithms are 

sensitive to initialization, during the clustering procedures authors of [37] have tried 

different initializations to cluster the data sets for each cluster number k. Then for each 

k, the clustering result happened with the highest frequency was chosen to be the 

clustering result for the cluster number k to be validated by the validity measures. Then 

all validity measures are computed from the same clustering results. 

2.3.2.3 Avoiding Erroneous Vectors 

There is a possibility that in our scheme, during computation of the CS and/or DB 

measures, a division by zero may be encountered. This may occur when one of the 

selected cluster centers in a DE-vector is outside the boundary of distributions of the 

data set. To avoid this problem authors of [37] checked to see if any cluster has fewer 

than two data points in it. If so, the cluster center positions of this special chromosome 

are re-initialized by an average computation. They put n/k data points for every 

individual cluster center, such that a data point goes with a center that is nearest to it.  

2.3.2.4 Modification of the Classical DE 

After performing a series of empirical experiments, authors of [37] proposed two 

parameter tuning strategies for DE in order to improve its convergence behaviour over 
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the clustering fitness landscape. In the original DE the difference vector  

   is scaled by a constant factor ‘F’. The usual choice for this control parameter is 

a number between 0.4 and 1. Authors proposed to vary this scale factor in a random 

manner in the range (0.5, 1) by using the following relation:   

F = 0.5·(1+ rand(0,1)) ,                                                  2.9  

where rand (0, 1) is a uniformly distributed random number within the range [0,1].The 

mean value of the scale factor is 0.75. This allows for stochastic variations in the 

amplification of the difference vector and thus helps retain population diversity as the 

search progresses. The authors of [37] have already shown that the DERANDSF (DE 

with Random Scale Factor) can meet or beat the classical DE. In addition to that, here 

they also decrease the crossover rate CR linearly with time from CRmax = 1.0 to CRmin = 

0.5. If CR = 1.0, it means that all components of the parent vector are replaced by the 

difference vector operator according to Equation 2.5. But at the later stages of the 

optimizing process, if CR be decreased, more components of the parent vector are then 

inherited by the offspring. Such a tuning of CR helps to explore the search space 

exhaustively at the beginning, but adjust the movements of trial solutions finely during 

the later stages of search, so that they can explore the interior of a relatively small space 

in which the suspected global optimum lies. 

The time-variation of CR may be expressed in the form of the following Equation,  

  ·  ,                      2.10  

where CRmax and CRmin are the maximum and minimum values of Crossover Rate CR, 

iter is the current iteration number and MAXIT is the maximum number of allowable 

iterations. 

2.3.2.5 Pseudo-code of the ACDE Algorithm 

The pseudo code of the complete ACDE algorithm is presented below. 
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Step 1: Initialize each search variable vector in DE to contain k number of randomly 

selected cluster centers and k (randomly chosen) activation thresholds in [0, 1]. 

Step 2: Find out the active cluster centers in each chromosome with the help of the rule 

described in section 2.3.2.1. 

Step 3: For iter =1to MAXITER do            // MAXITER is maximum number of iterations 

1) For each data vector Z , calculate its distance metric , ,  from all active 

cluster centers of the i-th DE-vector X . 

2) Assign X  to that particular cluster center ,  where , ,

  , ,…, , ,  

3) Check if the number of data points belonging to any cluster center ,  is less 

than 2. If so, update the cluster centers of the chromosome using the concept of 

average described earlier. 

4) Change the population members according to the DE algorithm with 

modifications proposed in section 2.3.2.4. Use the fitness of the vectors to guide 

the evolution of the population. 

Step 4: Report as the final solution the cluster centers and the partition obtained by the 

globally best vector (one yielding the highest value of the fitness function) at iter = 

MAXITER . 

2.4 A New Point Symmetry-Based Distance Measure 

This section presents a new point symmetry-based distance measure which is 

described in literature for improving point symmetric distance measure that is used to 

cluster overlapping and arbitrary shaped clusters with variable length. 

Symmetry is considered a pre-attentive feature which enhances recognition and 

reconstruction of shapes and objects [43]. Almost every interesting area around us 

consists of some generalized form of symmetry. As symmetry is so common in the 
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natural world, it can be assumed that some kind of symmetry exists in the clusters also. 

Based on this, Su and Chou [44] have proposed a symmetry-based clustering technique. 

They assigned points to a particular cluster if they present a symmetrical structure with 

respect to the cluster center. But this work has some limitations. 

S. Bandyopadhyay and S. Saha used a new point symmetry-based distance 

measure with an evolutionary clustering technique [45 ]. This algorithm is able to 

overcome some serious limitations of an earlier PS-distance proposed by Su and Chou. 

This algorithm is therefore able to detect both convex and non-convex clusters. 

Bandyopadhyay and Saha [ 46 ] offered certain improvements of this point 

symmetric distance measure and used it to cluster overlapping and arbitrary shaped 

clusters. Let a point be . The symmetrical (reflected) point of  with respect to                   

a particular center  is   

  2                                                               2.11  

Let knear unique nearest neighbours of    be at Euclidean distances of s, i=1, 

2,..., knear. Then the new point symmetry-based distance measure [44] is: 

, , ,  ,                                         2.12  

Where d x, c ∑ , it is a symmetry measure of  with respect to , and  

,  is the Euclidean distance between the point x and c. We used this distance 

measure instead of Euclidean distance with K-means algorithm. We used Equation 2.12 

by estimating knear 2.   

In [46] authors used this measure. They used fitness function of that chromosome, 

fit, which is defined as the inverse of M, i.e, 

it
1
M,                                                                        2.13  

Where M, is calculated as defined below: 

M = 0 
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FOR k = 1 to K  

   FOR all data points , i = 1 to n and ∈ kth cluster, do 

      M =M + , . 

   END FOR 

END FOR 

This fitness function, fit, will be maximized by using ACDE (Note that there 

could be other ways of defining the fitness function). 

In this part of the thesis, we concentrated our study on illustrating the performance 

of using different distance measures instead of Euclidean distance, so we will use 

k-means for simplicity, and after that we can generalize our ideas to use ACDE 

algorithm. 

The most limiting aspect of the measures [44] is that it requires a prior 

specification of a parameter  , based on whether assignment of points to clusters is done 

on the basis of the PS distance or the Euclidean distance. In order to compute the fitness 

of the chromosomes, in clustering with the PS-based distance measure, , 1 , is 

assigned to cluster k if and only if ,   , ,   j = 1, . . . , K,  j ≠ k and  

, /  , . For , /  ,  point   is assigned to 

some cluster m if and only if  ,   , , j = 1, . . . , K,  j ≠ m. In other 

words, point  is assigned to cluster k such that the PS-distance between  and center 

of cluster k is the minimum, and provided the total “symmetry” with respect to it is less 

than some threshold . Otherwise assignment is done based on the minimum Euclidean 

distance criterion. So the clustering performance is significantly affected by the choice 

of , and its best value is dependent on the data characteristics.  

Su and Chou in [47] have chosen  to be equal to 0.18. In [46] authors proposed to 

keep the value of  equal to the maximum nearest neighbour distance among all the 
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points in the data set. Thus the computation of  is automatic and does not require user 

intervention.  

It is evident that the symmetrical distance computation is very time consuming 

because it involves the computation of the nearest neighbours. Authors of [46] described 

that computation of  d x, c  is of complexity O(nD), where D is the dimension of the 

data set and n is the total number of points present in the data set. Hence, for K clusters, 

the time complexity of computing PS-distance between all points to different clusters is 

O(n2KD). In order to reduce the computational complexity, an approximate nearest 

neighbour search using the kd-tree approach is adopted in their paper.  
From aforementioned introduction, we can conclude the problems of using       

PS-distance as follows: 

1) This measure is suitable only to classify clusters of symmetrical shape.  

2) Using PS-distance for data clustering requires a prior specification of                  

a parameter  . 

3) The clustering performance is significantly affected by the choice of , and its 

best value is dependent on the data characteristics. 

4) The symmetrical distance computation is very time consuming because it 

involves the computation of the nearest neighbours. 

In chapter 3, we present an improved PS-distance for distance measure. We 

present our approach to tackle previous problems by using kd-tree. 

2.5 KD-Tree-Based Nearest Neighbor Computation 

This section presents kd-tree which is the most important multidimensional 

structure for storing a finite set of data points from k-dimensional space. In addition, the 

section illustrates the usage of kd-tree. We use kd-tree for improving performance of 

clustering algorithms and developing a new effective clustering algorithm.  
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A K-dimensional tree, or kd-tree [48] is a space-partitioning data structure for 

organizing points in a K-dimensional space. The kd-tree is a top-down hierarchical 

scheme for partitioning data. Consider a set of n points, (x1...xn) occupying                     

an m dimensional space Each point xi has associated with it m coordinates (xi1, xi2, ..., 

xim). There exists a bounding box, or bucket, which contains all data points and whose 

extrema are defined by the maximum and minimum coordinate values of the data points 

in each dimension. The data is then partitioned into two sub-buckets by splitting the 

data along the longest dimension of the parent bucket. These partitioning processes may 

then be recursively repeated on each sub-bucket until a leaf bucket is created, at which 

point no further partitioning will be performed on that bucket. A leaf bucket is a bucket 

which fulfils a certain requirement, such as, it only contains one data point.  

Kd-tree is the most important multidimensional structure for storing a finite set of 

data points from k-dimensional space. It decomposes a multidimensional space into 

hyper-rectangles. A kd-tree is a binary tree with both a dimension number and splitting 

value at each node. Each node corresponds to a hyper-rectangle. A hyper-rectangle is 

represented by an array of minimum coordinates and an array of maximum coordinates 

(e.g. in 2 dimensions (k = 2), (xmin, ymin) and (xmax, ymax)). When searching for the 

nearest neighbour we need to know if a hyper-rectangle intersects with a hyper-sphere. 

The contents of each node are depicted in Table 2.1. 

Table 2.1: The fields of kd-tree node 
Field Description 

Type Type of node tree (node or leaf) 
Parent The index of parent node in kd-tree 
splitdim  The splitting dimension number 
Splitval The splitting value 
left kd-tree A kd-tree representing those points to the left of the splitting plane 
right kd-tree A kd-tree representing those points to the right of the splitting plane 
Hyperrect The coordinates of hyperrectangle 
Numpoints The number of points contained in hyperrectangle   
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An interesting property of the kd-tree is that each bucket will contain roughly the 

same number of points. However, if the data in a bucket is more densely packed than 

some other bucket we would generally expect the volume of that densely packed bucket 

to be smaller. 

Approximate Nearest Neighbour (ANN) is a library written in C++ [49], which 

supports data structures and algorithms for both exact and approximate nearest 

neighbour searching in arbitrarily high dimensions. The ANN library implements kd-

tree data structure. In this thesis, we used ANN to find exact values of , in Equation 

2.12 in an efficient way.  

The function performing the k-nearest neighbor search in ANN is given a query 

point q, a nonnegative integer k, an array of point indices, nnidx, and an array of 

distances, dists. Both arrays are assumed to contain at least k elements. This procedure 

computes the k nearest neighbours of q in the point set and stores the indices of the 

nearest neighbours in the array nnidx. Here, k is set to be equal to knear. In this thesis, it 

is set to 2. In order to find PS-distance of a particular point    with respect to the center 

c, we have to find the first knear nearest neighbours of  x  which is equal to 2  c  x. 

Therefore, the query point q is set to be equal to  x . After getting the knear nearest 

neighbours of  x , the symmetrical distance of  x with respect to a center c is calculated 

using Equation 2.12. 

Each node splits the space into two subspaces according to the splitting dimension 

of the node, and the node’s splitting value. Geometrically this represents a hyper-plane 

perpendicular to the direction specified by the splitting dimension. Figure 2.7 (a) 

demonstrates a 2d-tree representation of the four data points (2,5), (3,8), (6,3), and (8,9). 

The root node (2,5) splits the plane in the y-axis into two subspaces along y=5. The 

point (3,8) lies in the upper subspace, that is {(x,y) | y>5} and splits along the x=3 
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plane. And so is in the right sub-tree. Figure 2.7 (b) shows how the nodes partition the 

plane. 

(a) (b) 

Figure 2.7: (a) A 2d-tree of four elements. (b) How the tree splits up the x,y plane. 
(adapted from Moore [47]) 

Searching for a point in the data set that is represented in a kd-tree is 

accomplished in a traversal of the tree from root to leaf which is of complexity 

O(log(n)) (if there are n data points). The first approximation is initially found at the 

leaf node which contains the target point. In Figure 2.8 (a) the target is marked × and 

the leaf node of the region containing the target is colored black.  As is exemplified in 

this case, this first approximation is not necessarily the nearest neighbour, but at least 

we know any potential nearer neighbour must be closer, and so it must be within the 

circle centerd on × and passing through the leaf node. We now back up to the parent of 

the current node. In Figure 2.8 (b) this parent is the black node. We compute whether it 

is possible for a closer solution to that so far found to exist in this parent’s other child. 

Here it is not possible, because the circle does not intersect with the (shaded) space 

occupied by the parent’s other child. If no closer neighbour can exist in the other child, 

the algorithm can immediately move up a further level, else it must recursively explore 

the other child. In this example, the next parent which is checked will need to be 

explored, because the area it covers (i.e. everywhere north of the central horizontal line) 

does intersect with the best circle so far. 
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(a) (b) 
Figure 2.8: Searching for a point in the data set  

(a) The leaf node containing the target.  
(b) The parent of the closest found so far. 

(adapted from Moore [47])  
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Chapter 3 

Methodology  

In this chapter we illustrate our original work for improving efficiency of 

classification and tackling the problem which is presented in chapter 1. This chapter 

illustrates usage of kd-tree for developing an improved PS-Based distance measure. 

This chapter describes our contribution for improving efficiency of k-means. We called 

the proposed algorithm as a novel effective k-means algorithm. We used an improved 

PS-Based distance measure for developing the proposed algorithm. This chapter 

illustrates our proposed original algorithm for classifying complex data sets. We called 

the proposed algorithm a Dynamic Linkage Clustering using KD-Tree (DLCKDT). We 

used selected nodes from kd-tree to develop this algorithm. Finally, this chapter 

illustrates our contribution for improving efficiency of ACDE to classify complex data 

sets automatically.  

3.1 Selecting Dense Points 

We proposed to use kd-tree for checking the connectivity of each data point with 

its cluster. We used kd-tree to determine the collections of dense regions in dimensional 

space. Using kd-tree will reduce computation cost and its results will be better than 

using other methods that are presented in literature for determining the dense regions. 

We selected some points of kd-tree which denote the dense centers of dense regions in 

the data set. We called these points as Dense Points (DPs).  

Selecting leaf nodes as DPs is not suitable because each leaf node in kd-tree is  

a bucket contains only one data point and will cause selecting all data points in the data 

set. So selecting leaf nodes as DPs will not form dense centers of dense regions in the 

data set.  
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(a) 

 
(b) 

Figure 3.2: (a) DPs of kd-tree. (b) Rectangular regions covered by DPs. 

Using upper levels in kd-tree (more than the 3rd level) for selecting DPs will 

decrease number of DPs for representing dense regions, but in the same time 

rectangular regions will be larger and will cover some parts of space which are empty 

from data points. Figure 3.3 shows selecting nodes from various levels in kd-tree and 

showing the corresponding of these nodes to data points in a data set of one cluster. 
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(a) (b) 

(c) (d) 

 
(e) 

Figure 3.3: Selecting nodes from various levels in kd-tree upper than the 3rd level 
 (a) Nodes of the 4th level. (b) Nodes of the 5th level. (c) Nodes of the 6th level. 

(d) Nodes of the 7th level. (e) Nodes of the 8th level. 
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We note from Figure 3.3 (a) that the number of nodes which denote to dense 

regions are smaller than number of DPs which are shown in Figure 3.2(b) but the size of 

rectangular regions are increased, this caused covering empty regions of data points. 

These effects are increased gradualness from Figure 3.3 (c) to Figure 3.3 (e). Figure 3.3 

(e) shows that only one node represents all data points in cluster and covers empty space 

outside the cluster. So we inferred, if we use upper levels for representing DPs then the 

shape which is formed by rectangular regions for covering the cluster will be rough, and 

many data points will be selected from other clusters if there are overlapped clusters in 

the data set.  

We can conclude that selecting the grandparent of the leaf nodes in kd-tree for 

representing DPs is the best choice to determine the collections of dense regions in 

dimensional space. We used this concept for selecting DPs in our experiments for 

increasing performance of classifying clusters in complex data set. 

Selecting DPs have many advantages. First of all, using DPs reduces the number 

of data points used for classification, so this method will reduce time complexity. From 

other side, using DPs will reduce the effect of noise (outlying data points) on 

classification. Figure 3.4 shows position of DPs (plotted as circles) in data set having 

one cluster with outlying data points. We note that the outlying data points, which 

denoted as + symbols in the four corners of the Figure, is not selected as DPs. We note 

also that all DPs are concentrated in spaces which have density of data points.  

So we can use DPs for checking density reachability of each data point with its 

cluster. Using DPs will be effective for classifying complex data sets which have 

overlapped and arbitrary shaped clusters.  

  



www.manaraa.com

43 
 

 
Figure 3.4: Selecting DPs form data set having noise 

Next, we will use DPs for improving efficacy of some clustering algorithms and 

developing a new effective clustering algorithm.  

3.2 Improved PS-Based Distance Measure 

In this section, we illustrate our method for enhancing PS-Based distance measure 

by using kd-tree. This enhancement is used for classification and overcoming pervious 

limitations which were presented in section 2.4.   

When we used k-means with Euclidean distance to calculate distances between  

data points and centroids and then classify data points to the nearest centroid, we noted 

that the results of classification were bad with using complex data sets. Of course, the 

results will be better when we use PS-based distance measure, but the clusters also were 

not classified correctly. 

We dissected this problem and deduced that we must include the density of points 

with the distance measure to classify this type of data sets. When using k-mean with 

Euclidean distance and PS-based distance measure, then all points are assigned to the 

nearest cluster despite of some of them are connected to other clusters. So if we study 

connectivity of these pointes with nearest clusters then we will tackle the problem and 

classify all clusters correctly. 
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Our proposed method uses DPs of kd-tree for determining the connectivity instead 

of using other methods which are presented in literature like DBSCAN. We developed 

a simple algorithm for selecting points which are classified incorrectly when using 

Euclidean distance with k-means. This algorithm is as follows: 

FOR each data point X do 

 Find the nearest 2 centroids of X (i.e. C1, C2) 

 Find the nearest 2 DPs of X (i.e. DP1, DP2) 

  IF ,     ,  OR  ,     ,  

  Select X 

END IF 

END FOR 

In the algorithm above,  is the PS-distance measure which is calculated by 

Equation 2.12. We used PS-distance measure instead of Euclidean distance to improve 

clustering performance. We used value of 2 for knear in Equation 2.12, because this 

value gives good results when merging connectivity with distance measure. Of course, 

using value greater than 2 for knear will increase accuracy of classification, but it will 

increase time complexity. Our approach merges connectivity with distance measure, so 

checking connectivity of each data point with its cluster will increase accuracy and 

using value greater than 2 for knear is necessary.          

The work described in this thesis concerns crisp (hard) clustering algorithms only. 

So each pattern (data point) will assign to one and only one cluster. So we concerns 

classification to the nearest 2 clusters of each pattern. If the data point is not followed to 

the nearest cluster (nearest cenriod), then it will be connected to the 2nd nearest cluster.  

The algorithm above finds the nearest 2 clusters (centroids) of each pattern, and 

then finds the nearest 2 DPs of this pattern. After that, the algorithm checks the 
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connectivity of this pattern with the 2nd nearest cluster by checking if any point of 

nearest 2 DPs is followed to that cluster or not. If any point of nearest 2 DPs is followed 

to the 2nd nearest cluster then we sure that the pattern follows to the 2nd nearest cluster 

despite of it nears to the 1st nearest cluster.  

We used the nearest 2 DPs to check connectivity of each pattern to its cluster. Of 

course using more number of nearest DPs for checking connectivity will increase 

accuracy of classification, but will increase time complexity. Using two DPs is enough 

for checking connectivity of each data point with its cluster, because our study depends 

on calculating distances to the nearest clusters. Catching only one DP followed to the 

2nd nearest cluster is enough to decide that the data point is connected to the 2nd nearest 

cluster, and for increasing accuracy of classification we used 2 DPs instead of one.         

Depending on previous concepts we developed a new distance measure for 

improving the performance of PS-distance measure as follows: 

,  
,
,

,
,                                          3.1  

Where  denotes the PS-based distance measure which is calculated by 

Equation 2.12, and  denotes the Euclidean distance.  and  denote the first and 

second DPs of kd-tree which are selected as demonstrated in the previous section.  

denotes the second nearest centroid of . 

First part of Equation 3.1   ,
,
   checks connectivity of 1st nearest DP (DP ) 

to the 2nd nearest centroid of  . If d DP , c  > d DP , c  then the value of  

,
,

 will be small, this will cause attaching pattern  to cluster c  because 

classification of data points depends on assigning each data point  to cluster which has 

the smallest distance , . If d DP , c  < d DP , c  then the value of  ,
,
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will be big, this will cause attaching pattern  to cluster  because the distance between 

 and  ( , ) will be bigger than distance between  and  ( , ) when 

calculating all distances between pattern  and  all centroids in the data set. Second part 

of Equation 3.1 ,
,

 checks connectivity of 2nd nearest DP (DP ) to the 2nd 

nearest centroid of   same as checking connectivity of DP  in first part. The two 

parts of Equation 3.1 are added corresponding to OR operation in the above algorithm. 

Next, we use Equation 3.1 to develop a novel effective K-means algorithm for 

classifying complex data sets. We use it also for improving the performance of ACDE 

algorithm for classifying more complex data sets. 

3.3 A Novel Effective K-Means Algorithm 

This section describes our contribution for improving efficiency of k-means. We 

called the proposed algorithm a novel effective k-means algorithm. We used an 

improved PS-Based distance measure for developing the proposed algorithm.  

We present the pseudo code of a novel Effective K-means algorithm that we have 

developed as follows: 

1. Initialize K center locations (C1, ..., CK). 

2. Select DPs of kd-tree. 

3. FOR each cluster center Cj do 

FOR each data point Xi do 

Calculate dIPS (Xi , Cj) by using Equation 3.1. 

END FOR 

END FOR 

4. Assign each data point Xi to its cluster center Cj by selecting the minimum distance 

of dIPS (Xi , Cj). 

5. Update each cluster center Cj as the mean of all Xi that have been assigned to it. 
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6. Calculate ∑ min … , . 

7. If the value of D has converged, then return (C1, ..., CK); else go to Step 3. 

This algorithm has three main advantages: 

1) It is very easy to implement. 

2) It does not use additional parameters like other algorithms which are proposed in 

literature for improving the efficiency of K-means algorithm. Most of 

parameters which are used by other algorithms are sensitive to the performance 

of classification. 

3) Its performance is better than the performance of K-means. It classified more 

data sets which were classified incorrectly by K-means algorithm. 

However this algorithm suffers from the following disadvantages: 

1) The user has to specify the number of classes in advance. 

2) Processing time is increased compared to k-means using Euclidean distance. 

3) The algorithm uses a greedy approach and is heavily dependent on the initial 

conditions. This often leads the results to converge to sub-optimal solutions. 

We propose to use [25] in step 1 of our novel algorithm to eliminate the 

dependency on the initial conditions. 

3.4 Dynamic Linkage Clustering using KD-Tree 

In this section we develop a new clustering algorithm depending on the kd-tree. 

We called the proposed algorithm as a Dynamic Linkage Clustering using KD-Tree 

(DLCKDT). We used selected nodes from kd-tree to develop this algorithm. Our goal 

for developing this algorithm is classifying complex data sets more accurately than 

other algorithms which are presented in the literature.  

The new developed clustering algorithm depends on the kd-tree. It consists of 

three phases: The first phase selects DPs of kd-tree for using them as initial seeds. The 
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second phase assigns each data set to its nearest DP. So the output of this phase is 

a collection of small clusters whose number is equal to the number of DPs. The last 

phase merges the small clusters (output of the second phase). During the third phase, 

each iteration consists of merging the nearest two clusters. This phase continues until 

the number of clusters is equal to the value which is specified by the user in advance 

(denoted by the number of classes). 

The pseudo code of our novel clustering algorithm using kd-tree is: 

(1) Input the number of clusters K. 

(2) Select DPs of kd-tree (DP1,...,DPn). 

(3) Assign each data point Xi to its nearest DPj to form initial clusters of data points.     

(4) Merge every two adjacent clusters of step 3.  

(5) Find the nearest two clusters and merge them. 

(6) If the number of merged clusters N > K, then go to Step 5; else return the merged 

clusters. 

Step 2 is the first phase in the algorithm for selecting DPs of kd-tree. Step 3 is the 

second phase. It creates a large number of small groups which are used as initial 

clusters. Steps 4, 5, and 6 form the final phase. This phase merges clusters which are 

generated in step 3. The merging is terminated when the number of merged clusters is 

equal to the value of K, where K is an input parameter which is defined as the target 

number of clusters. Step 4 decreases to half the number of selected clusters which are 

generated by step 3. This step is used for reducing time complexity. 

We used the nearest neighbor distance [50] to calculate the distance between each 

two clusters C1 and C2 which is denoted by ,  where: 

 , min , ,                                          3.2  
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Figure 3.5 gives an example of the nearest neighbor distance in the two-

dimensional case. We note that ,  is the Euclidean distance between the nearest 

points between clusters  and . For calculating this equation we need to calculate all 

distances between each point in  and  and then finding the minimum distance. We 

can find the nearest two clusters for step 5 of the algorithm by calculating the minimum 

distance between all clusters. 

 

Figure 3.5: Nearest neighbour distance between two clusters. 

The Dynamic Linkage Clustering using KD-Tree (DLCKDT) has three main 

advantages: 

1) It is easy to implement. 

2) The algorithm does not depend on the initial conditions. This forces the 

algorithm to converge to global solution. 

3) It doesn’t reliance on a priori knowledge and user defined parameters. 

4) It can classify very complex data sets which cannot be classified by our novel 

effective k-means algorithm.  

However the proposed algorithm suffers from the following disadvantages: 

1) The user has to specify the number of classes in advance. 

2) The elapsed time is increased when comparing it with our novel effective  

k-means algorithm. 
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3.5 Improved ACDE Algorithm 

In this section we propose some modifications and enhancements to ACDE 

algorithm to improve its performance and classify more complex data sets. 

We propose using median value instead of mean values (Equation 1.2) for 

calculating   ,  of the chromosome, so we used medoids instead of centroids to 

represent each cluster. This modification decreases the sensitivity of noise (outlying 

data points). We also suggest initializing the parameter vectors by selecting the values 

randomly form the data points of the data set. These two modifications decrease the 

time for searching for the global solution. We also propose using Equation 3.1 to 

calculate the improved PS-based distance between the medoids and the data points 

instead of using Euclidean distance. So our improvements to the ACDE algorithm are as 

follows: 

Pseudo-code of the improved ACDE Algorithm (Phase I) 

1. Initialize each search variable vector in DE to contain a number , k , of randomly 

selected data points of the data set, and select randomly k activation thresholds 

in [0, 1]. 

2.  Find out the active cluster medoid in each chromosome with the help of the rule 

described in section 2.3.2.1.  

3.  For iter =1to MAXITER do 

3.1 For each data vector Z , calculate its distance metric , ,  from 

all active cluster centers of the i-th DE-vector X . 

3.2 Assign X  to that particular cluster medoid ,  where , ,

  , ,…, , ,  

3.3 Check if the number of data points belonging to any cluster medoid ,  

is less than 2. If so, update the cluster medoid of the chromosome using 
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the concept of average described earlier by calculating median value 

instead of mean value. 

3.4 Change the population members according to the DE algorithm with 

modifications proposed in Section 2.3.2.4. Use the fitness of the vectors 

to guide the evolution of the population. 

4.  Report as the final solution the cluster medoids and the partition obtained by the 

globally best vector (one yielding the highest value of the fitness function) at iter 

= MAXITER. 

We calculated the fitness function by finding the maximum value of the 

summation of distances between clusters. We calculated the distance between every two 

clusters by using Equation 3.2. We can also calculate the distance between two clusters 

by calculating the Euclidean distance between its mediods. The used fitness function is 

as follows: 

,
,

                                                   3.3  

Where k is the number of selected clusters which is equal to the number of active 

mediods that is calculated by using rule which is described in section 2.3.2.1.  

We tested the enhanced algorithm with many data sets but some clusters of large 

size did not classify correctly. This fault is consisted because Equation 3.3 is not 

suitable for classifying complex data set. Developing suitable fitness function to classify 

complex data sets by ACDE is not easy work. For tackling this problem we created 

a connected graph to connect the sub-clusters which classified incorrectly by using 

Equation 3.3.  

We developed a connected graph by applying steps 2, 3, and 4 of the DLCKDT 

algorithm (see section 3.4). Firstly, we selected DPs of kd-tree. Secondly, we assigned 
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each data point to its nearest DP. Finally, we connected every two adjacent DPs clusters 

by connecting the nearest two data points of the adjacent DPs clusters.  

To implement connected graph by software, we can create a matrix and fills it 

with all connected points in the connected graph. This matrix is created once in the 

beginning of program and then it can be used for many times in the same program. This 

will save time consuming when running the program. Size of matrix depends on number 

of points in the data set and the number of dimensions.  

Figure 3.6 shows example of connected graph which is created on a data set has 

three clusters (marked by dashed circles) in two dimensions. We note that most points 

in each cluster are connected in the connected graph, so we can connect them to form 

one cluster if they are classified to more than one sub-cluster after using Equation 3.3 

with phase I of enhanced ACDE.     

 

Figure 3.6: The Connected Graph 

Figure 3.6 shows that, the connected graph is created by connecting each data 

point (mark as shaded circles) to nearest DP (mark as unshaded circles) to form small 

groups of points (large number of small clusters), then every two adjacent groups are 

connected by connecting the nearest 2 points between every two adjacent groups. We 

note that every cluster has its connected graph and all connected graphs are separated. 



www.manaraa.com

53 
 

So every cluster is modelled by connected graph. Based on this, we can use the 

connected graph to classify all clusters correctly. 

So the improved ACDE has two phases. The first phase is as described previously 

and the second phase merges the sub-clusters by using the connected graph. We tested 

the connection between every two adjacent clusters (C1, C2) by using the following 

pseudo-code: 

1. FOR each data point Xi in cluster C1 do 

1.1 FOR each data point Xj in cluster C2 do 

   1.1.1 Find Xi and Xj in the connected graph. 

1.1.2 IF Xi and Xj are connected, then  

    1.1.2.1 Merge C1 and C2. 

1.1.2.2 Update the medoids of each cluster by calculating the 

median value of its points. 

      END IF 

  END FOR 

END FOR 

We tested the improved ACDE algorithm with many data sets. It classified all the 

data sets which were tested by the novel effective k-means algorithm and the novel 

clustering algorithm using kd-tree.  

The improved ACDE has the following advantages: 

1) Its performance is better than the novel effective k-means algorithm and the 

novel clustering algorithm using kd-tree. 

2) It is able to automatically find the optimal number of clusters (i.e., the number of 

clusters does not have to be known in advance). 
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3) It is not sensitive to the initial conditions. This forces the algorithm to converge 

to global solution. 

However the improved ACDE suffers from one main disadvantage. It increased the 

elapsed time compared to the Novel Effective K-Means Algorithm and the novel 

clustering algorithm using kd-tree. 
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Chapter 4 

Experimental Results  

4.1 Performance of Automatic Clustering Differential Evolution 

We implemented ACDE algorithm by using MATLAB 7.3 (R2006b) for 

illustrating its performance. We tested this algorithm with synthetic data set which has 

four clusters that are well separated. Figure 4.1 (a) shows the data set and the trial 

locations of maximum number of cluster centers. In this experiment we initialized each 

search variable vector in DE to contain 7 numbers of randomly selected cluster centers 

and 7 (randomly chosen) activation thresholds in [0, 1].  

Figure 4.1 (b) shows the result of clustering by using ACDE. We note that this 

algorithm determined the optimal number of clusters and labelled them correctly. Points 

corresponding to each cluster are marked in specific symbols.    

This result demonstrates that ACDE is a powerful clustering algorithm. It 

clustered unlabeled data set in automatic way and without prior knowledge of the data.  

But there are some defects that will arise when testing other forms of data sets. Next we 

will investigate fundamental problems. 

(a) (b) 

Figure 4.1: (a) Unlabelled data set with trial cluster centroids.  
(b) Clustering result with ACDE 
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Previous experiment illustrates using of ACDE algorithm and some of its 

performance results which demonstrated its efficiency. We used in that experiment 

a well separated data set, so we obtained a good result. But when we use more complex 

data sets, the performance results of the ACDE algorithm will be bad. 

We tested ACDE with more complex synthetic data set which is shown in Figure 

4.2 (a). This data set has three clusters with regular and symmetrical shapes. The result 

of classification is shown in Figure 4.2 (b). Result of classification became worse when 

comparing it with result of previous experiment. We note that the data set was classified 

incorrectly and ACDE algorithm did not detect the correct number of clusters. ACDE 

algorithm classified data set to four clusters instead of three. The largest cluster which is 

shown in the bottom of Figure 4.2 (b) is separated to two clusters. The two clusters (its 

points are marked as stars and triangles symbols) which are shown in the bottom of 

Figure 4.2 (b) must merge to form one cluster. We note also that the points of clusters 

did not classify correctly. The upper left cluster (its points are marked as square 

symbols) was classified correctly, but the upper right cluster (its points are marked as 

circles) has some points which are classified incorrectly and assigned to the lower 

cluster (its points are marked as stars).       

(a) (b) 

Figure 4.2: (a) Unlabelled data set with trial cluster centroids.  
(b) Clustering result with ACDE. 
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4.2 Performance of a New Point Symmetry-Based Distance Measure 

We implemented experiment to test efficiency of using Euclidean and a new point 

symmetry-based distance measures for classification. We focused our study in this 

experiment for testing these distances only, so we used k-means algorithm instead of 

ACDE for simplicity. We used Euclidean distance and a new point symmetry-based 

distance for measuring symmetry between clusters. We used in this experiment the 

same data set which is used previously for testing performance of ACDE algorithm. 

Figure 4.3 (a) shows the used data set and the initial locations of centroids which 

are used by k-means algorithm. The result of classification by using K-means with 

Euclidean distance is shown in Figure 4.3 (b). Of course, all the clusters are classified 

incorrectly. We can use Euclidean distance for classifying clusters with spherical shape, 

so this data set will not be suitable. As shown in the Figure; the right upper cluster is 

classified into three groups where some of the points that are denoted as triangles are 

assigned to the left upper cluster, and some of the other points which are denoted as 

stars are assigned  to lower cluster.  

We can conclude that using Euclidean distance is not suitable for measuring 

symmetry distances between clusters which are non-globular shapes and have different 

sizes.    

We repeated this experiment by using the new point symmetry-based distance 

measure instead of Euclidean distance with k-means algorithm. The new point 

symmetry-based distance measure is suitable for measuring symmetry between clusters 

of regular and symmetrical shapes.  

Figure 4.3 (c) shows result of classification the same data set by using k-means 

algorithm with a new point symmetry-based distance measure. We note that the data set 
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is classified correctly to three clusters. Points corresponding to each cluster are marked 

in specific symbols.  

(a) (b) 

 
(c) 

Figure 4.3: (a) Unlabelled data set with trial cluster centroids. 
 (b) Clustering result by K-means with Euclidean distance. 

 (c) Clustering result by K-means with the PS-based distance measure. 
 

From the other side, we can classify this data set with ACDE algorithm by using 

suitable index as its fitness function like Equation 2.8. 

At this moment, we can say that we have a good distance measure in view of the 

result shown in Figure 4.3(c). But this result will change when classify more complex 

data set as shown in Figure 4.4.  

Figure 4.4 (a) shows a complex synthetic data set in two dimensions contains four 

clusters which have irregular and unsymmetrical shapes and have different sizes. As 
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shown in the figure, the clusters are slightly overlapped which cause difficulty for 

classifying by many algorithms which are described in the literature.  

(a) (b) 

 
(c) 

Figure 4.4: (a) Unlabelled data set with trial cluster centroids.  
(b) Clustering result by K-means with Euclidean distance measure. 

(c) Clustering result by K-means with the PS-based distance measure. 

We classified the data set of Figure 4.4 (a) by using k-means with Euclidean 

distance and a new point symmetry-based distance. Figure 4.4 (b) shows the result of 

classification this data set by using k-means with Euclidean distance. As shown in the 

figure, all clusters are classified incorrectly. We note that the largest cluster is classified 

into four groups and most of its points are assigned to the other three clusters. The main 
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explanation for this result is that the data points are assigned to the nearest centroid in 

spite of they are connected to other cluster.  

We repeated this experiment by using the new point symmetry-based distance 

measure instead of Euclidean distance with k-means algorithm. Figure 4.4(c) shows the 

result of classification by using k-means with the new point symmetry-based distance 

measure. We note that clusters did not classify correctly, but of course this result is 

better than result of using Euclidean distance which is shown in Figure 4.4(b). Many of 

data points are classified incorrectly by using Euclidean distance while they are 

classified correctly by using the new point symmetry-based distance measure. 

We tried manually to choose different values of  to enhance the result of 

classification by using the new point symmetry-based distance measure. Figure 4.5 

shows the best results after changing the value of  to 0.8. We note that one of the four 

clusters (its points are marked as triangle symbols) is classified correctly. We also noted 

that If  is a small value, then percentage of data points which are classified incorrectly 

will increase. And vice versa, if  is a large value then percentage of data points which 

are classified incorrectly will decrease.    

 
Figure 4.5: The best result achieved by clustering  

with changing  when using the PS-based distance. 
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We used also concept of [46] for calculating  in our experiments, but as shown in 

Figure 4.4 (c), it is not effective with this data set and clusters are classified incorrectly. 

We conclude that using the new point symmetry-based distance measure with 

k-means algorithm is insufficient for classifying complex data sets which have clusters 

of irregular and unsymmetrical shapes. When we used this distance measures instead of 

Euclidean distance, we noted that it is appropriate for some data sets which have only 

clusters of symmetrical shapes. 

4.3 Performance of Improved PS-Based Distance Measure 

In this section, we illustrate performance of using improved PS-Based distance 

measure in classification and overcoming pervious limitations which were presented in 

section 2.4. We use the kd-tree structure for decreasing computation cost in searching 

on nearest points and improving the performance of classification. We use DPs of kd-

tree for checking connectivity of each data point with its cluster.  

For simplicity we fixed the value of each centroid of clusters to be the mean value 

of cluster’s points. And then we studied the effect of improved PS-Based distance 

measure on classifying data points to the nearest centroid. Figure 4.6 shows the used 

data set, and centroid of each cluster. 

 
Figure 4.6: Complex synthetic data set 
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We used in the this experiment the same data set which classified incorrectly by 

using k-means with Euclidean distance and a new point symmetry-based distance 

measure. In this experiment we use improved PS-Based distance for measuring 

symmetry between clusters. We measure improved PS-Based distance between each 

data point  and all centroids, and then we assign the data point  to cluster which gives 

the minimum improved PS-Based distance between its centroid and . Using improved 

PS-Based distance measure produced excellent result and all clusters are classified 

correctly. 

We tested algorithm of section 3.2. Figure 4.7 shows the output of applying this 

algorithm on the same data set of Figure 4.6. When we compare this Figure with Figure 

4.4 (b), we note that points, which are shown as shaded squares in this Figure, 

correspond to most of points which are classified incorrectly in Figure 4.4 (b).  

We can conclude that we fixed the main problem of wrong classification which 

results by using k-means with Euclidean distance measure and a new point symmetry-

based distance measure. So we can use this algorithm to determine if the data point is 

connected to farther cluster, and then assign it to that cluster instead of nearest cluster. 

 
Figure 4.7: Result of using our enhancement of the PS-Based  

distance measure for selecting incorrectly classified points 
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4.4 Performance of a Novel Effective K-Means Algorithm  

We tested k-means algorithm for classification a complex synthetic data set which 

is shown in Figure 4.8 (a), where the initial values of centroids are shown as shaded 

circles. We used the same data set which is used for testing performance of Euclidean 

distance measure, a new point symmetry-based distance measure, and improved PS-

Based distance measure. We used this data set because it has clusters of irregular 

shapes, different sizes and slightly overlapped. This data set did not classify by many 

algorithms which are described in literature, and using it in this experiment we illustrate 

the contrast of using different distance measures with k-means.  

We assume that the algorithm has converged when no change in the values of 

centroids. Firstly, we used Euclidean distance for measuring the distance between data 

points and centroids in step 2 of k-means algorithm and assigning each data point to the 

nearest centroid (corresponding to the minimum distance). The results were worse as 

shown in Figure 4.8 (c). We note that all clusters are classified incorrectly and the 

largest cluster is classified to four groups. We note also that the centroid of the lower 

cluster is moved to region which is empty of data points. 

After that, we used PS-distance measure (Equation 2.12) instead of Euclidean 

distance. Of course the results were better as shown in Figure 4.8 (d), but only one 

cluster (its points are marked as square symbols) is classified correctly.  

Finally, we used improved PS-distance measure (Equation 3.1) to calculate the 

distance between data points and centroids (step 2 of k-means Algorithm), and select 

the minimum distance between each data point and centroids. Figure 4.8 (b) shows 

selected DPs of kd-tree (marked as circles) which are used by Equation 3.1. The results 

were the best as shown in Figure 4.8 (e). We note that all clusters are classified 

correctly and all centroids, which are shown as shaded squares, are calculated correctly. 
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(a) (b) 

(c) (d) 

 
(e) 

 
Figure 4.8: (a) Complex Synthetic data set (b) DPs of kd-tree. 
(c) Using Euclidean distance (d) Using PS-distance measure  

(e) Using improved PS-distance measure 

We tested the performance of our novel algorithm and compared it with k-means 

using Euclidean distance and PS-distance measure. We measured elapsed time, 
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percentage of data points which are classified incorrectly, and the number of iterations 

executed until the algorithm converges. The algorithms were applied to synthetic data 

set which is shown in Figure 4.8 (a). The algorithms were implemented in MATLAB 

7.3 (R2006b) on laptop Intel(R) Core(TM) 2 CPU. The clock speed of the processors is 

1.66 GHz, and the memory size is 1.00 GB of RAM. Table 4.1 shows the results. 

Table 4.1: Performance Analysis of K-Means and Novel Effective K-Means  

Algorithm Elapsed Time 
 (s) 

Error 
(%)  

Iterations 
 (#) 

k-means using Euclidean distance 0.029259 0.2436 8 
k-means using PS-distance measure 7.113533 0.0872 26 
Novel Effective K-Means Algorithm 3.383083 0.0 3 

We note that using Euclidean distance with k-means takes the smallest elapsed 

time, but the percentage of data points (percentage of error) which are classified 

incorrectly is the largest as shown in Figure 4.8 (c). Percentage of error is decreased 

when k-means is used with PS-Based distance measure, but it takes more elapsed time. 

It needs more number of iterations until the convergence takes place.  

Our novel effective k-means algorithm gave the best performance. It takes the 

smallest number of iterations, and it classified all data points correctly. It takes more 

time for classification when comparing it with Euclidean distance and it takes less time 

when comparing it with PS-Based distance measure.  

The time elapsed of step 2 of a novel effective k-means algorithm is 0.123331 

seconds, so the time elapsed by our novel effective k-means algorithm is 3.259752 

seconds without calculating the time of selecting DPs of kd-tree. We can conclude that 

selecting DPs of kd-tree did not influence the total elapsed time of using a novel 

effective k-means algorithm, because the kd-tree is created only once and then its nodes 

are used many times in the algorithm. This also matches the using of high dimensional 

data set. 
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We compared performance of our novel effective k-means algorithm with 

classical k-means algorithm. The following real-life data sets [51] are used for testing 

performance of our novel effective k-means algorithm and classical k-means algorithm. 

Here, n is the number of data points, d is the number of features, and K is the number of 

clusters.  

1. Pima Indians diabetes data set (n=768, d=8, K=2): This data were sampled from 

two clusters. The first cluster has 268 objects and the second cluster has 500 

objects. All patients here are females at least 21 years old of Pima Indian 

heritage. The data contains eight relevant features: 1) number of times pregnant; 

2) plasma glucose concentration a 2 hours in an oral glucose tolerance test; 

3) diastolic blood pressure; 4) triceps skin fold thickness; 5) 2-hour serum 

insulin; 6) Body mass index; 7) diabetes pedigree function; and 8) age. 

2. Echocardiogram data set (n=131, d=7, K=2): The problem is to predict whether 

or not the patient will survive at least one year. The most difficult part of this 

problem is correctly predicting that the patient will not survive. This data were 

sampled from two clusters. The first cluster has 43 objects and the second 

cluster has 88 objects. The data contains seven relevant features: 1) age when 

heart attack occurred; 2) pericardial-effusion; 3) fractional-shortening; 4) E-

point septal separation; 5) left ventricular end-diastolic dimension; 6) wall 

motion score; and 7) wall motion index. 

3. Ecoli data set (n=336, d=7, K=8): The data were sampled from eight different 

classes: 1) cp (143 objects); 2) im (77 objects); 3) imS (2 objects); 4) imL 

(2 objects); 5) imU (35 objects); 6) om (20 objects); 7) omL (5 objects); and  

8) pp (52 objects). The data contains seven relevant features: 1) McGeoch's 

method for signal sequence recognition; 2) von Heijne's method for signal 
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sequence recognition; 3) von Heijne's Signal Peptidase II consensus sequence 

score; 4) Presence of charge on N-terminus of predicted lipoproteins; 5) score of 

discriminant analysis of the amino acid content of outer membrane and 

periplasmic proteins; 6) score of the ALOM membrane spanning region 

prediction program; and 7) score of ALOM program after excluding putative 

cleavable signal regions from the sequence. 

4. Hayes-Roth data set (n=132, d=4, K=3): This data were sampled from three 

clusters: The first cluster has 51 objects; the second cluster has 51 objects; and 

the third cluster has 30 objects. The data set contains 4 numeric-valued 

attributes: 1) hobby; 2) age; 3) educational level; and 4) marital status.  

5. Statlog (Heart) data set (n=170, d=13, K=2): This data set is a heart disease 

database. The data set contains 13 attributes: 1) age; 2) sex; 3) chest pain type; 

4) resting blood pressure; 5) serum cholestoral; 6) fasting blood sugar > 120 

mg/dl?; 7) resting electrocardiographic results; 8) maximum heart rate achieved; 

9) exercise induced angina; 10) ST depression induced by exercise relative to 

rest; 11) the slope of the peak exercise ST segment; 12) number of major 

vessels; and 13) thal (normal; fixed defect; or reversable defect). The objective 

is to classify each data vector into present (120 objects) or absent (150 objects). 

6. Post-Operative patient data set (n=90, d=8, K=3): This is a data set of patient 

features. The classification task of this data set is to determine where patients in 

a postoperative recovery area should be sent to next. Because hypothermia is a 

significant concern after surgery, the attributes correspond roughly to body 

temperature measurements. The data set contains eight attributes: 1) patient's 

internal temperature; 2) patient's surface temperature; 3) oxygen saturation; 4) 

last measurement of blood pressure; 5) stability of patient's surface temperature; 
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6) stability of patient's core temperature; 7) stability of patient's blood pressure; 

and 8) patient's perceived comfort at discharge. The problem is to predict the 

current discharge decision: 1) patient sent to Intensive Care Unit (2 objects); 

2) patient prepared to go home (24 objects); and 3) patient sent to general 

hospital floor (64 objects). 

7. Statlog (image segmentation) data set (n=2310, d=19, K=7): The instances were 

drawn randomly from a database of 7 outdoor images. The images were hand 

segmented to create a classification for every pixel. Each instance is a 3x3 

region. The data set contains 19 attributes: 1) the column of the center pixel of 

the region; 2) the row of the center pixel of the region; 3) the number of pixels in 

a region; 4) the results of a line extractoin algorithm that counts how many lines 

of length 5 with low contrast, less than or equal to 5, go through the region; 

5) same as short-line-density-5 but counts lines of high contrast, greater than 5; 

6) measure the contrast of horizontally adjacent pixels in the region. The mean is 

given; 7) measure the contrast of horizontally adjacent pixels in the region. The 

standard deviation is given; 8) measures the contrast of vertically adjacent 

pixels. The mean is given; 9) measures the contrast of vertically adjacent pixels. 

The standard deviation is given; 10) intensity mean; 11) the average over the 

region of the R value; 12) the average over the region of the B value; 13) the 

average over the region of the G value; 14) measure the excess red; 15) measure 

the excess blue; 16) measure the excess green; 17) value mean; 18) saturation 

mean; and 19) hue mean. The data were sampled from seven different Classes: 

1) brickface; 2) sky ; 3) foliage; 4) cement; 5) window; 6) path; and 7) grass. 

The number of objects that belong to each cluster is 330. 
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We used Waikato Environment for Knowledge Analysis (WEKA) [52] version 

3.6.2 for classifying data sets by classical k-means algorithm. Figure 4.9 shows 

graphical user interface of Weka Explorer. 

 

Figure 4.9: Weka Explorer 

Weka is a collection of machine learning algorithms for data mining tasks. The 

algorithms can either be applied directly to a dataset or called from your own Java code. 

Weka contains tools for data pre-processing, classification, regression, clustering, 

association rules, and visualization. It is also well-suited for developing new machine 

learning schemes. 

We tested performance of classical k-means and novel effective k-means by 

counting the data points which are classified incorrectly. The data set description and 

the individual performance of classical k-means algorithm and our novel effective 

k-means algorithm are summarized in Table 4.2.  
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Table 4.2: The data sets description, the number of incorrectly  
clustered instances by k-means and novel effective k-means  

#  Data set name n D K 

# Datapoints 
incorrectly 
clustered by 

k-means 

# Datapoints 
incorrectly 

clustered by novel 
effective k-means 

1 pima Indians diabetes 768 8 2 261 236 
2 echocardiogram 131 7 2 43 41 
3 ecoli 336 7 8 130 54 
4 hayes-roth 132 4 3 78 60 
5 statlog (heart) 270 13 2 110 99 
6 post-operative patient 90 8 3 52 26 
7 statlog (image segmentation) 2310 19 7 950 580 

We observed that our novel effective k-means algorithm performed very well. We 

found that classical k-means algorithm failed to classify 0.43% of the average number 

of all instances in the data sets while our novel effective k-means algorithm performed 

0.31%. So we can conclude that our novel effective k-means performs better 

performance than classical k-means. 

4.5 Performance of Dynamic Linkage Clustering using KD-Tree  

Experimental results are shown in this section to demonstrate the effectiveness of 

the Dynamic Linkage Clustering algorithm using KD-Tree (DLCKDT). We used 

synthetic and real data sets for testing efficiency of the proposed algorithm. We tested 

our algorithm with many data sets.  

Figure 4.10 (a) shows a complex synthetic data set in two dimensions to be 

classified by our proposed algorithm. This data set contains two clusters which are 

slightly overlapped.  

DPs of kd-tree (marked as circles) which are used for classifying are shown in 

Figure 4.10 (b). We note that DPs are distributed though whole data set, and located in 

the dense regions.  

Figure 4.10 (c) shows the output of step 3 in the algorithm. We note that every 

data point is connected to the nearest DP. We note that this step generates a collection 
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of small clusters where DPs form their centroids. We note that 32 groups (marked with 

different colors and shapes) are created, and number of these groups equal to number of 

used DPs.  

(a) (b) 

(c) (d) 

(e) 

Figure 4.10: (a) Synthetic data set (b) DPs of kd-tree.(c) Clusters of DPs  
(d) Merging every two adjacent clusters of DPs (e) The output of algorithm 
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The output of step 4 in the algorithm is shown in Figure 4.10 (d). It merges every 

two adjacent clusters of the previous step. We note that the number of groups is 

decreased to 14 groups. This number is equal approximately to half number of groups 

which are created by previous step (step 3) in the algorithm. This step reduces elapsed 

time for running the algorithm.  

The final output of the algorithm is shown in Figure 4.10 (e). We note that all data 

points are classified correctly despite of clusters are overlapped. Points of the first 

cluster are labelled as triangles and points of the second cluster are labelled as circles. 

We used our algorithm for classifying a lot of complex data sets. Figure 4.11 

illustrates the power of our algorithm. We used a data set that consists of two circles 

(two clusters); one of them is inside the other as shown in Figure 4.11 (a).  

Figure 4.11 (b) shows the DPs (marked as circles) of kd-tree. We note that DPs 

are distributed though whole data set, and located in the dense regions. We note that the 

DPs formed the shape of clusters with small number of data points. 

Figure 4.11 (c) shows the clusters of DPs. We note that every data point is 

connected to the nearest DP. We note that this step generates a collection of small 

clusters where DPs form their centroids.  We note that many groups, which are marked 

with different colors and shapes, are created, and number of these groups equal to 

number of used DPs. 

The results of merging every two adjacent clusters of DPs are shown in Figure 

4.11 (d). We note that the number of group is reduced to only 24 groups.  

The output of the algorithm is shown in Figure 4.11 (e). We note that data set is 

classified correctly into to clusters. Data points of the first cluster (the smallest circle) 

are marked as circles and the data points of the second cluster (the largest circle) are 

marked as triangles.  
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(a) (b) 

(c) (d) 

 
(e) 

Figure 4.11: (a) Complex Synthetic data set (b) DPs of kd-tree. (c) Clusters of DPs 
(d) Merging every two adjacent clusters of DPs (e) The output of algorithm 

The data sets of Figure 4.9 (a) and Figure 4.10 (a) can not be classified by our 

novel effective k-means algorithm which is presented in section 3.3 or by a lot of 
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algorithms which are described in the literature. So we can conclude that our algorithm 

classify complex data sets. 

We tested the time complexity of our proposed algorithm. We measured the 

elapsed time of classifying data set of Figure 4.8 (a). Table 4.3 shows a comparison 

between k-means, our novel effective k-means algorithm and our novel clustering 

algorithm DLCKDT. We tested this algorithm with the same system which is used for 

testing algorithms in section 4.4. As expected, the novel clustering algorithm requires 

more time than the novel effective k-means algorithm. But of course, DLCKDT 

algorithm is more robust because it does not depend on the initial conditions like 

k-means and the novel effective k-means. 

Table 4.3: Performance Analysis of K-Means,  
Novel Effective K-Mean, and DLCKDT 

Algorithm Elapsed Time 
 (s) 

k-means using Euclidean distance 0.029259 
k-means using PS-distance measure 7.113533 
A Novel Effective K-Means Algorithm 3.383083 
A Dynamic Linkage Clustering using KD-Tree 5.603688 

Our proposed algorithm is a density-based clustering algorithm because it finds 

a number of clusters starting from the estimated density distribution of corresponding 

nodes. So we compared performance of our proposed algorithm with DBSCAN 

algorithm. The following real-life data sets [51] are used for testing performance of our 

proposed algorithm DLCKDT and DBSCAN. Here, n is the number of data points, d is 

the number of features, and K is the number of clusters.  

1. Iris plants data set (n = 150, d = 4, K = 3): This is a well-known data set with 

4 inputs, 3 classes, and 150 data vectors. The data set consists of three different 

species of iris flower: Iris setosa, Iris virginica, and Iris versicolour. One class is 

linearly separable from the other 2; the latter are not linearly separable from 

each other. For each species, 50 samples with four features each (sepal length, 
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sepal width, petal length, and petal width) were collected. The number of objects 

that belong to each cluster is 50. 

2. Abalone data set (n=1253, d=8, K=3): This is a data set for predicting the age of 

abalone from physical measurements. The data were sampled from three 

clusters: the first cluster has 397 objects, the second cluster has 434 objects, and 

the last cluster has 422 objects. The data contains eight relevant features: 1) sex; 

2) length; 3) diameter; 4) height; 5) whole weight; 6) shucked weight; 

7) viscera weight; and 8) shell weight.   

3. Contraceptive method choice data set (n=1473, d=9, K=3): This data set is  

a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The 

samples are married women who were either not pregnant or do not know if they 

were at the time of interview. The problem is to predict the current contraceptive 

method choice: 1) no use (629 objects); 2) long-term methods (333 objects); or 

3) short-term methods (511 objects) of a woman based on her demographic and 

socio-economic characteristics. The data contains nine relevant features: 

1) wife's age; 2) wife's education; 3) wife's education; 4) number of children 

ever born; 5) wife's religion; 6) wife's now working?; 7) husband's occupation; 

8) standard-of-living index; and 9) media exposure. 

4. Haberman's survival data set (n=306, d=3, K=2): The data set contains cases 

from a study that was conducted between 1958 and 1970 at the University of 

Chicago's Billings Hospital on the survival of patients who had undergone 

surgery for breast cancer. The objective is to classify each data vector into: 

1) the patient survived 5 years or longer (225 objects); or 2) the patient died 

within 5 year (81 objects). The data contains three relevant features: 1) age of 
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patient at time of operation; 2) patient's year of operation; and 3) number of 

positive axillary nodes detected. 

5. Heart disease data set (n=303, d=13, K=2): This is a data set with 

13 inputs, 2 classes, and 303 data vectors. The "goal" field refers to the presence 

of heart disease in the patient. The problem is to predict the diagnosis of heart 

disease (angiographic disease status) by classifying each data vector into: 

1) < 50% diameter narrowing (164 objects); or 2) > 50% diameter narrowing 

(139 objects). The data contains 13 relevant features: 1) age; 2) sex; 3) chest 

pain type; 4) resting blood pressure; 5) serum cholestoral; 6) fasting blood sugar 

> 120 mg/dl?; 7) resting electrocardiographic results; 8) maximum heart rate 

achieved; 9) exercise induced angina?; 10) ST depression induced by exercise 

relative to rest; 11) the slope of the peak exercise ST segment; 12) number of 

major vessels; and 13) thal (normal, fixed defect, or reversable defect); 

We used Waikato Environment for Knowledge Analysis (WEKA) for classifying 

data sets by DBSCAN algorithm. We assigned input parameters of DBSCAN algorithm 

to epsilon=0.9 and minPoints= 6 for classifying all data sets. We tested performance of 

DBSCAN and our algorithm DLCKDT by counting the data points which are classified 

incorrectly. The data set description and the individual performance of DBSCAN 

algorithm and our algorithm DLCKDT are summarized in Table 4.4.  

Table 4.4: The data sets description, the number of incorrectly clustered 
 instances by DBSCAN algorithm and DLCKDT algorithm  

#  Data set name  n d K 

# Datapoints 
incorrectly 
clustered by 
DBSCAN 

# Datapoints 
incorrectly 
clustered by 
DLCKDT 

1 Iris 150 4 3 100 39 
2 abalone 1253 8 3 819 616 
3 contraceptive method choice 1473 9 3 876 851 
4 haberman's survival 306 3 2 269 79 
5 heart disease 303 13 2 179 133 
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We observed that the proposed algorithm performed very well. We found that the 

DBSCAN algorithm failed to classify 0.68% of the average number of all instances in 

the data sets while DLCKDT performed 0.41%. 

We can conclude that the proposed algorithm performs better performance than 

DBSCAN algorithm and it doesn’t reliance on a priori knowledge and user defined 

parameters like DBSCAN.      

4.6 Performance of Improved ACDE 

We tested the enhanced algorithm by classifying the data set shown in Figure 4.8 

(a). The result of classifying the data set is shown in Figure 4.12. We note that three of 

clusters in the data set are classified correctly, but the largest cluster is divided into 

small clusters.  

 

Figure 4.12: Classification resulted by phase I of improved ACDE  

Figure 4.13 shows the connected graph of the data set used in Figure 4.12. By 

comparing Figures 4.12 and 4.13 we note that some pointes in sub-clusters of Figure 

4.12 are connected with other pointes in the adjacent sub-clusters as shown in Figure 

4.13, so we can connect them to form one cluster. 
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Figure 4.13: The connected graph 

We compared performance of classical ACDE algorithm with our improved 

ACDE algorithm. The following real-life data sets [51] are used for testing performance 

of classical ACDE algorithm and our improved ACDE algorithm. Here, n is the number 

of data points, d is the number of features, and K is the number of clusters.  

1. Glass (n = 214, d = 9, K = 6): The data were sampled from six different types of 

glass: 1) building windows float processed (70 objects); 2) building windows 

non float processed (76 objects); 3) vehicle windows float processed (17 

objects); 4) containers (13 objects); 5) tableware (9 objects); and 6) headlamps 

(29 objects). Each type has nine features: 1) refractive index; 2) sodium; 3) 

magnesium; 4) aluminum; 5) silicon; 6) potassium; 7) calcium; 8) barium; and 

9) iron. 

2. Statlog (vehicle silhouettes) data set (n = 846, d = 18, K = 4): The purpose is to 

classify a given silhouette as one of four types of vehicle, using a set of features 

extracted from the silhouette. The data were sampled from four different types 

of vehicle: 1) a double decker bus (218 objects); 2) Cheverolet van (199 

objects); 3) Saab 9000 (217 objects); and 4) an Opel Manta 400 (212 objects). 

Each type has 18 features: 1) compactness; 2) circularity; 3) distance circularity 
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area; 4) radius ratio; 5) pr.axis aspect ratio; 6) max.length aspect ratio; 7) scatter 

ratio; 8) elongatedness area; 9) pr.axis rectangularity area; 10) max.length 

rectangularity area; 11) scaled variance major; 12) scaled variance minor; 13) 

scaled radius of gyration; 14) skewness about major; 15) skewness about minor; 

16) kurtosis about major; 17) kurtosis about minor; and 18) hollows ratio.  

3. Yeast data set (n = 1484, d = 8, K = 10): The purpose is to localize site of 

protein. The data contains eight relevant features: 1) McGeoch's method for 

signal sequence recognition; 2) von Heijne's method for signal sequence 

recognition; 3) score of the ALOM membrane spanning region prediction 

program; 4) score of discriminant analysis of the amino acid content of the 

N-terminal region of mitochondrial and non-mitochondrial proteins; 5) Presence 

of "HDEL" substring; 6) peroxisomal targeting signal in the C-terminus; 

7) score of discriminant analysis of the amino acid content of vacuolar and 

extracellular proteins; and 8) score of discriminant analysis of nuclear 

localization signals of nuclear and non-nuclear proteins. The data were sampled 

from 10 classes: 1) 244 objects; 2) 429 objects; 3) 463 objects; 4) 44 objects; 

5) 35 objects; 6) 51 objects; 7) 163 objects; 8) 30 objects; 9) 20 objects; and  

10) 5 objects; 

4.  Zoo data set (n = 101, d = 16, K = 7): The data were sampled from seven sets of 

animals: 1) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, 

dolphin, elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, 

lion, lynx, mink, mole, mongoose, opossum, oryx, platypus, polecat, pony, 

porpoise, puma, pussycat, raccoon, reindeer, seal, sealion, squirrel, vampire, 

vole, wallaby, wolf (41 objects); 2) chicken, crow, dove, duck, flamingo, gull, 

hawk, kiwi, lark, ostrich, parakeet, penguin, pheasant, rhea, skimmer, skua, 
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sparrow, swan, vulture, wren (20 objects); 3) pitviper, seasnake, slowworm, 

tortoise, tuatara (5 objects); 4) pitviper, seasnake, slowworm, tortoise, tuatara 

(13 objects); 5) frog, frog, newt, toad (4 objects); 6) flea, gnat, honeybee, 

housefly, ladybird, moth, termite, wasp (8 objects); and 7) clam, crab, crayfish, 

lobster, octopus, scorpion, seawasp, slug, starfish, worm (10 objects). The data 

contains 16 relevant features: 1) hair; 2) feathers; 3) eggs; 4) milk; 5) milk; 6) 

aquatic; 7) predator; 8) toothed; 9) backbone; 10) backbone; 11) venomous; 12) 

fins; 13) fins; 14) tail; 15) domestic; and 16) catsize. 

5. Lenses data set (n = 24, d = 4, K = 3): The data contains 4 relevant features: 

1) age of the patient; 2) spectacle prescription; 3) astigmatic; and 4) tear 

production rate. The objective is to classify each data vector into: 1) the patient 

should be fitted with hard contact lenses (4 objects); 2) the patient should be 

fitted with soft contact lenses (5 objects); and 3) the patient should not be fitted 

with contact lenses (15 objects).   

6. Wine (n = 178, d = 13, K = 3): This is a classification problem with “well-

behaved” class structures. The data contains 13 relevant features: 1) Alcohol; 

2) Malic acid; 3) Ash; 4) Alcalinity of ash; 5) Magnesium; 6) Total phenols; 

7) Flavanoids; 8) Nonflavanoid phenols; 9) Proanthocyanins; 10) Color 

intensity; 11) Hue; 12) OD280/OD315 of diluted wines; and 13) Proline.  

The data were sampled from three types of wine: 1) 59 objects; 2) 71 objects; 

and 3) 48 objects.   

7. Soybean (small) data set (n = 47, d = 35, K = 4): The data were sampled from 

four different types of soybean: 1) 10 objects; 2) 10 objects; 3) 10 objects; and 

4) 17 objects. The data contains 35 relevant features: 1) date; 2) plant-stand; 

3) precip; 4) temp; 5) hail; 6) crop-hist; 7) area-damaged; 8) severity; 9) seed-
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tmt; 10) germination; 11) plant-growth; 12) leaves; 13) leafspots-halo; 

14) leafspots-marg; 15) leafspot-size; 16) leaf-shread; 17) leaf-malf; 18) leaf-

mild; 19) leaf-mild; 20) lodging; 21) stem-cankers; 22) stem-cankers; 23) 

fruiting-bodies; 24) external decay; 25) mycelium; 26) int-discolor; 27) 

sclerotia; 28) fruit-pods; 29) fruit spots; 30) seed; 31) mold-growth; 32) seed-

discolor; 33) seed-size; 34) shriveling; and 35) roots.  

We tested performance of classical ACDE and our improved ACDE algorithm by 

counting the data points which are classified incorrectly. The data set description and 

the individual performance of the classical ACDE algorithm and the improved ACDE 

algorithm are summarized in Table 4.5. 

Table 4.5: The data set description, the number of incorrectly clustered 
 instances by classical ACDE algorithm and improved ACDE algorithm  

#  Data set name N d K 

# Datapoints 
incorrectly 
clustered by 

classical ACDE 

# Datapoints 
incorrectly 
clustered by 

Improved ACDE 
1 glass 214 9 6 148 132 
2 vehicle 846 18 4 534 498 
3 yeast 1484 8 10 900 756 
4 zoo 101 16 7 55 18 
5 lenses 24 4 3 19 9 
6 wine 178 13 3 53 50 
7 soybean 47 35 4 18 7 

We observed that our improved ACDE algorithm performed very well. We found 

that classical ACDE algorithm failed to classify 0.56% of the average number of all 

instances in the data sets while our improved ACDE algorithm performed 0.39%. So we 

can conclude that our improved ACDE algorithm performs better performance than 

classical ACDE.   
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis we described an essential problem in data clustering and presented 

some solutions for it. We investigated using distance measures other than Euclidean 

type for improving the performance of clustering. We also developed a new distance 

measure and proved its efficiency. We developed a novel effective k-means algorithm 

which improved the performance of the k-mean algorithm. We developed a novel 

clustering algorithm by using kd-tree and we proved its performance. The ACDE 

algorithm that we presented is specific to clustering simple data sets and finding the 

optimal number of clusters automatically. We improved ACDE for classifying more 

complex data sets using kd-tree. The proposed algorithms did not have a worst-case 

bound on running time.  

Experimental results are shown in this thesis to demonstrate the effectiveness of 

the proposed algorithms. We illustrated the time complexity and the performance of 

classifying complex data sets. We proved that the proposed algorithms can classify 

complex data sets more accurately than other algorithms presented in the literature.  

5.2 Future Work 

The work reported in this thesis may be extended in a number of ways, some of 

which are discussed below: 

1) If the number Kmax which is used in ACDE algorithm is small then the results 

will be bad when classifying complex data set, and if it is large then the elapsed 

time will increase to converge to global value. So we need to study the optimum 

value of Kmax. 
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2) In chapter 4 we used a new point symmetry-based distance measure instead of 

Euclidean type for improving the performance of clustering. It is interesting to 

investigate other kinds of distance measures. 

3) We used kd-tree for improving the performance of classification. Many 

optimizing search strategies in kd-trees are developed in literature. We can use 

these strategies for improving the time complexity of our algorithms and study 

their performance. 

4) Our proposed algorithms depend on kd-tree for improving the performance of 

clustering. It is interesting to study some other kinds of trees like R+_tree and   

Bkd-tree: A Dynamic Scalable kd-tree.  
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